UiO ¢ University of Oslo

A Dynamically Scaled Cloud-based
Web-Service using Docker-Swarm, HAProxy
and OpenStack

by

Samiul Saki Chowdhury (589795)
HiOA: (S316611)

Supervisor

Kyrre Begnum

Service Management and Developer Operations
(MS019A / INF4019NSA)

Network and System Administration (Department of Informatics)
Faculty of Mathematics and Natural Sciences
University of Oslo
Norway

Oslo
August 2, 2017



Abstract

In this report, a cluster of cloud-based web-service is built in order to adjust the number of
Docker-based web-servers (containers) in order to manage the incoming rate of user requests. The
main focus of this cloud-based web-services is to prevent service depletion due to heavy traffic
from outside network and automate the nodes to generate new services to adapt the requests
approaching for accessing those web-services. To achieve this infrastructure, several tools such as
Docker-Swarm, Docker-Machine, HAProxy have been used. Additionally, Grafana, InfluxDB and
cAdvisor have been used to monitor the traffic pattern as well as CPU, memory and file-system
usage of the nodes. Upon successful testing with the ApacheBench to exhaust the traffic handling
capability of the load-balancer, the services are auto-scaled in order to adjust the concurrent
connection requests and to stabilize the network overload.



Contents

Contents
List of Figures

1 Introduction

1.1 Problem Statement . . . . . . . . ... e
1.2 Project Objectives . . . . . . . . . .
1.3 Report Outline . . . . . . . . . e
2 Background
2.1 Dynamic Scaling Cloud . . . . . . ... .. .
2.1.1 Benefits of dynamic auto scaling clouds . . . . ... .. ... ... .....
2.2 Docker . . . .
2.2.1 Benefits of using Docker . . . . . . . . ... L
2.2.2 Docker-Machine . . . . . . . . . . e e
2.2.3 Docker-Swarm . . . . ...
2.3 HAProxy . . . . . . e
2.4 Grafana . . . . ..
2.5 InfluxDB . . . .
2.6 CcAdviIsor . . . ..
2.7 ApacheBench . . . . . . . .
3 Technical Design
3.1 Design Principle . . . . . . . ...
3.2 Design Model . . . . . . .
3.3 Design Architecture . . . . . . . . ...
4 Design Principle
4.1 Algorithm . . . . . . . . e
4.2 Flow Diagram . . . . . . . .. L e
5 Discussion
5.1 Test Scenario . . . . . . . . .
5.2 Test Results . . . . . . . . .
5.3 Possible Future Work . . . . . . . . ...

6 Conclusion
References
Appendices:

A
IT

11
11
13
14

19
19
22

24
24
24
30

31

32

34

34



I1I

36

49

51



List of Figures

2.1
2.2

3.1

4.1

5.1
5.2
5.3
5.4
5.5
5.6

[lustration of Docker-Machine Mechanism [1] . . . . . .. ... ... ... ... ..

Hlustration of Docker Swarm Load-Balancing Algorithm [2] . . . ... ... .. ..
[lustration of the Technical Design of the Dynamic Scaling Cloud Framework . . .
[lustration of the Flow Diagram of Design Implementation in the Framework . . .

Network State of the Docker-Swarm . . . . . . . .. ... ... ... ... ... ..
CPU State of the Docker-Swarm . . . . . . . .. .. ... oo
Memory State of the Docker-Swarm . . . . . . . .. .. ... 0L
HAProxy Status of the Cluster . . . . . . . . . ... .. ... . ... ... .....
Visualisation of the Docker-Swarm . . . . . . .. .. ... ... ... ...

Time vs Connection Status . . . . . . . . . . .

1A%

13

23



ProJecT: 2 STUDENT: S316611

Chapter 1

Introduction

In this project, we are given the task to create a dynamically scaling cloud-based infrastructure to
automate the number of web-services based on the incoming requests towards the web-servers. In
the cloud computing business, the number of interest on having an infrastructure on a cloud-based
servers are ascending. Having the cloud-based platform give the opportunities to the users/devel-
opers to work on a hardware constraint platform. Although the cost of devices are less paying for
uptime of the virtual machines (VMs) are still a big concern. The demand for having a cluster of
VMs which can be deployed in a second and can be monitored and scaled to certain requirements
are demanding among the users. The servers designed to work as services are in need to main-
tained in order to reduce cost and avoid saturation. In this project, a cloud-based web service
need to be create which can regulate the number of docker-based web-servers on OpenStack, based
on the incoming rate of user requests. This recalls the scaling of the web-services to adapt to the
user demand.

To achieve such framework, a number of requirements we need to consider in this project:

1. A load-balancer is required in order to distribute the payload (user requests in this case)
among the all web-server.

2. Based on the user request to access the web-services the number of nodes/web-servers need
to be adjusted.

3. A scripted approach can be utilised to adjust these required number of web-services. The
information can be harvested from the load-balancer itself.

4. A monitoring service have to be in place for observing the traffic pattern and alert the
developers based on the conditions given.

5. Finally a numerical test needed to be conducted to demonstrate the increasing number of
servers based on the increasing numbers of incoming requests have been made.

1.1 Problem Statement

The number of server can be spawned or deleted based on requests in a simple and easy manner.
But taking into account that the uptime for a VM in cloud environment it is a complex method
to avoid creating numerous VMs for a few number of web-requests. The technique to utilise most
of a single VM using simple tools is a difficult process and the design for such infrastructure need

1



ProJecT: 2 STUDENT: S316611

to be carefully outlined. The problem arise when the increasing number of requests demands new
services. Additionally, the services/servers also have to be removed once the connection request
rate goes down or the web-services are no longer needed. The latter is to ensure to avoid server
saturation. A simple but effective solution is required to solve this issue.

1.2 Project Objectives

Our task in this project is to create a framework where a load-balancer can successfully distribute
the user requests among all the the servers and return the reply messages to the requester machines.
The main focus of this project is the scaling. The main goal is to having a setup where the web-
services can be created and removed based on the ongoing traffic pattern between servers/nodes
and the load-balancer. We need to create a cluster of docker-machine nodes as web-servers which
have docker-swarm cluster in place in order to minimized the space requirements for such design
and use HAProxy to use as load-balancer. Monitoring tools such as Grafana along with InfluxDB
and cAdvisor is to be deployed to observe the traffic pattern and to take action based on the
conditions. Apache AutoBench is used to exhaust the web-servers by imitating the web requests
in real-life platform. Finally, a scripted approach is adapted which will run and observe the
incoming connection rate information yielded by HAProxy and add/remove docker web-services
in the swarm accordingly.

1.3 Report Outline
Rest of this report is organised as follows:

e In Chapter 2, the necessary features of the referred tools and enabling technologies which
are adapted to this project are briefly discussed.

e In Chapter 3, the infrastructure of the project design is described and framework setup is
elaborated in order to achieve the project goals.

e In Chapter 4, the implementation of technical design is thoroughly followed up using flow
diagrams to give the readers an extensive idea behind the design principle. The proposed
algorithm applied to the cluster is also explained thoroughly in this chapter.

e In Chapter 5, the overall performance results of the testing of project design is discussed
along with potential usage of the framework.

e And finally, Chapter 6 outlines the conclusion of this project.



ProJecT: 2 STUDENT: S316611

Chapter 2

Background

The tools that used to deploy a well-structured server varies on user requirements. In order to
achieve and reach the desired goal a system administrator need to accommodate different tools/-
software for individual tasks. In the modern day web framework and configuration management,
developers tend to choose the right device that can provide them to not only to deploy a service in
the cloud but also maintain and monitor the services in order to accomplish a stable foundation
The stability of the foundation depends on the quality and effectively of the tools that have been
utilised. To avoid large project deployment and bulky resource consuming systems, the best tools
that fits well for the projects are chosen. The fundamental of web-service is to making sure the
services never get depreciated. Additionally, the developers need to confirm that the servers are to
be monitored in regular manner and if needed it would automate the healing process itself from the
situation that can cause the services to be downgraded. Most importantly, it is mostly required to
run an autonomous system which is self-sufficient to response to complex circumstances and can
be configured can be maintained without help of any human interaction. This type of framework
are getting more famous among companies and businesses which provide services based on their
clients’ requests. The number of requests for services are mostly based upon the number of clients
and their service subscriptions. The unique value proposition of Cloud Computing creates new
opportunities to align I'T and business goals. Cloud computing is essentially a powerful comput-
ing paradigm in which tasks are assigned to a combination of connections, software and services
accessed over a network. The vast processing power of Cloud Computing is made possible though
distributed, large-scale computing clusters, often in concert with server virtualisation software
and parallel processing. Several different types of mechanism and appliances are used by the vast
majority of the service providers and operations management teams. In this Chapter, the tools to
implement our cloud-based web-servers are discussed.

2.1 Dynamic Scaling Cloud

Scalability is critical to the success of many enterprises currently involved in doing business on
the web and in providing information that may vary drastically from one time to another. Cloud
computing provides a powerful computing model that allows users to access resources on-demand.
Maintaining sufficient resources just to meet peak requirements can be costly. A dynamic scaling
algorithm for automated provisioning of VMs resources based on threshold number of active ses-
sion is needed in this case. Capabilities on-demand for the cloud services to provision and allocate
resources dynamically to the users are one of the main goal of the dynamic scaling cloud. In
this section, the compelling benefits of the Cloud which can handle sudden load surges, deliver
IT-resources to its clients and maintain its standard of high resource utilization is discussed.

3



ProJecT: 2 STUDENT: S316611

There is some of the key features need to be considerate while creating a dynamically scaled cloud
cluster:

e Auto-scaling is needed to be included to scale dynamically. How to scale in response to
changing demand need to be set carefully. If the web applications runs in certain numbers
of instances a new or some few instances need to spawned as soon as the load on the
current instances rises over certain threshold. Then again the number of instances needed to
decreased down when the load level goes down under some threshold. The level of thresholds
will vary on user specification, i.e., service providers’ advertised policies.

e A alarming monitor can be useful when setting up dynamic scaling cloud which in general
will used to alert and trigger a certain scaling policy and associated with the scaling group.
An alert is an object that watches over a single metric (e.g. current session connection rate
of the instances) over a period of time. When the value of the metric reach over a certain
threshold (that is defined) in the specific time interval, the alert will perform some actions
in order to scale in or scale out the number of web-servers (instances).

e Different types of applications requires different resources. Application requires different
scaling for different tiers (some heavy on storage and some on computing). Certain ap-
plication can be beneficial from scaling up when other apps can use a good scaling down
algorithm. A well-balanced scaling algorithm need to be in place. Application built for scale
out can add new servers within a few minutes and make them the part of the cluster. On the
other hand, scale in approach takes advantage of performance and efficiencies inherent power
systems that allows execution of unexpected and dynamic workload with linear performance
gains while at the same time the efficient use of server capacity is uncompromised

2.1.1 Benefits of dynamic auto scaling clouds

Some benefits of auto scaling clouds are mentioned below:

e In a application architecture adding auto scaling feature can maximize the benefits of cloud
systems.

e Scaling can launch instances (if needed on demand) to support the infrastructure stability.
e Better fault tolerance can be achieved by detecting when an instance is unhealthy.

e A better cost management is established when auto scaling dynamically increase and decrease
capacity as needed. Since customers need to pay the by the uptime, the appropriate number
of VMs as necessary can reduce the uptime cost.

e Computing at the scale of the Cloud allows users to access supercomputer-level computing
power which gives the users access to the enormous and elastic resources whenever they need
them. For the same reason, cloud computing is also described as on-demand computing.

The call for setting up a good framework for dynamic auto-scaled cloud cluster a number of tools
need to be perfectly coordinated. In the next section, the tools utilised for this project are briefly
described:



ProJecT: 2 STUDENT: S316611

2.2 Docker

Docker is an open-source technology that is vastly embraced by proprietary software companies
such as Microsoft and mostly UNIX systems. The most important reason behind using docker as
has lower system requirements than of VM hypervisors, such as Hyper-V, KVM and Xen. Con-
tainers spawned in docker use shared operating systems, that means they are much more efficient
than hypervisors when in comes the term for system resources. Containers rest on top of the Linux
instances instead of virtualising hardware which means it is possible to leave behind all the bulky
VM junks and just with a small capsule containers with a distinct application/s. Therefore with
a perfectly tuned docker container system anyone can have as many as 4-6 times of the number of
server applications instances than hypervisors. Although, docker is a new name in the developing
field but spawning containers is quite old idea. This idea dates back at least year 2000. Other
companies such as Oracle Solaris also has a similar concept called Zones but companies like Docker
and Google concentrate more on open-source projects as OpenVZ and LXC (Linux Containers) to
make it work better and more secured.

Docker is built on top of LXC and has its own file system, storage, CPU, RAM and so on. The
key difference between containers and VMs is that the hypervisors abstracts an entire device while
containers only abstract the operating system kernels. Hypervisors can use different operating
systems and kernel such as Microsoft Azure can run on both Windows Server and SUSE Linux
Enterprise Server but with the Docker, all the containers must use the same operating system and
kernel. On the other hand, Docker containers can be used to get most server application instances
running on the least amount of hardware. This approach can save a large amount of resources
for the cloud providers or data centres. Using Docker the deployment of containers become easier
and safer. Developers around the globe are using Docker to pack, ship and run any application
as portable, self sufficient, lightweight containers in virtually anywhere. Docker containers are
easy to deploy in the cloud. It has been designed to incorporate into most DevOps applications,
including puppet, Chef, Ansible or just on its own to manage development environments. It makes
easy to create and run ready containers with applications and it makes managing and deploying
application much easier.

2.2.1 Benefits of using Docker

In the I'T world running application instead of bulky virtual machines is a fast gaining momentum.
The technology is one of the fastest growing in recent history due to its adaptation in industry
level along with software vendors. Docker as a company and its software have grown immensely
in technology field due to its usability.

Simple and fast configurations

One of the key benefit of Docker is the way it simplifies matter. VMs are allowing the users to run
any platform with its own configurations on top of the infrastructure of the user where Docker has
concentrated on the same benefit except reducing the overhead of a VM. An user can take their
own configuration, put in into codes and deploy it in quick and easy manner. Docker containers
can be used in wide variety of environments since the infrastructure requirements are no longer
an issue for the environment of the application.



ProJecT: 2 STUDENT: S316611

Increased productivity

Two major goals arises when when it comes to working in a developer environment, they are the
bringing of the product as close to production as possible. It is done by running all the services
on its own VM to show the application functionality However, any overhead needed to be avoid
when compiling the application. The second goal is to make the development environment as fast
as possible for interactive use. Receiving the feedback after tests is important in production level.
Docker shows its functionality by not adding to the memory footprint and by allowing much more
services at the same time.

Rapid deployment

The appearance of VMs took bringing up the hardware down to minutes. However, Docker
manages to reduce this deployment time to mere seconds. The reason behind is that Docker
containers creates every process but does not boot the OS. The cost of bringing up the system is
next to null while creating and destroying the data in the Docker containers. The resources can
be allocated in more aggressive manner with containers instances.

2.2.2 Docker-Machine

Docker machine is the tool that enable installation of Docker-Engine on a virtual hosts to manage
the hosts with docker-machine commands. Using this tool Docker hosts can be created in the
various platforms such as local machines, virtual box or even on cloud provider such as OpenStack.
Using the docker-machine commands an instance can be started, inspected, stopped, restarted. It
can also be possible to upgrade the Docker clients and daemon using this tool. Using the docker-
machine env (environment) commands the developers can load a Docker host (a different instance
even) as default and make configuration changes on that particular host. Different other apps
and services can be created, deployed and maintained though docker-machine without having to
accessing the Docker clients individually. This makes the developer to use a single master server
(instance) to control or manage the entire network in the cluster of Docker hosts. Although
Docker Engine runs on natively on all Linux systems, Docker Machine enables users to provision
multiple remote Docker hosts on a network, in the cloud or even locally. The main difference
between Docker Engine and Machine is that typically for the client-server application Engines
(or commonly known as just Docker) are Docker daemon, a REST API that specifies interfaces
for interacting with the daemon and a command line interface (CLI) client that can talk to the
daemon (through the REST API wrapper). On the other hand, Docker Machine is a tool for
provisioning and managing your Dockerized hosts (with Docker Engine on them) [1]. Fig. 2.1
gives a brief taste of how docker-machine works in principal.

2.2.3 Docker-Swarm

Docker-Swarm is the Docker cluster management and orchestration features which is embedded
in Docker-Engine. It is built using Swarm-Kit A swarm mode can be enabled by either initialising
swarm or joining an existing swarm. It is a collection of nodes with Docker-Engines which is
used to deploy services. Using swarm mode in Docker containers, services are setup and those
swarm services and stand-alone containers can be run on the same Docker instances. A swarm
node is an instance of the Docker Engine participating in the swarm. One or more nodes can be
run on a single physical computer or cloud server, but production swarm deployments typically
include Docker nodes distributed across multiple cloud machines. Usually, to deploy a application

6



ProJecT: 2 STUDENT: S316611

Client
Docker-Machine

REST API

Client
Docker CLI

Server
Docker-Daemon

ewea Docker-Machine Create , o

REST API

<L

docker docker

Figure 2.1: Illustration of Docker-Machine Mechanism |[1]

a service definition need to be submitted to a manager node. The manager nodes then dispatches
unit of work called tasks to worker nodes. Manager nodes also performs the orchestration and
cluster management functions required to maintain the desired state of the swarm where the tasks
are conducted by an elected single leader. Worker nodes executes received tasks dispatched from
manager nodes. An agent runs on each worker nodes and reports on the tasks assigned to it. The
worker nodes then notifies the manager node of the current state so that the swarm-manager can
maintain the desired state of each worker. However, services can be deployed to manager only as
well.

A service is the definition of the tasks to execute on the worker nodes. It is the central structure
of the swarm system and the primary source of user interaction with the swarm. Upon creating
services the developers can choose which container to use and which commands to be executed.
In the replicated services model, the swarm manager distributes a specific number of replica tasks
among all the node based upon the required scaling goal. A service as a task runs on Docker
container and the commands runs inside the containers. A scheduling unit activates using swarm
where manager node assign tasks to worker nodes according to the number of replicas set in the
service scale. The swarm manager initialize an ingress load-balancing to expose the services that
is required to make available externally to the swarm. All nodes is a swarm participate in an
ingress routing mesh. The routing mesh enables each node in the swarm to accept connections on
published ports for any service running in the swarm, even if there is no task running on the node.
The algorithm routes all incoming requests to published ports on available nodes to an active
container. As a swarm-manager the node can automatically (can be chosen manually) publish
ports for the services. The automatically chosen default port range is between (30000 - 32767).
Swarm mode has an internal DNS component that automatically assigns each service in the swarm
a DNS entry. Swarm manager uses internal load balancing to distribute requests among services
within the cluster based upon the DNS name of the service [2]. A quick overview of the Docker
swarm load-balancing principal can be shown in the Fig. 2.2.

7



ProJecT: 2 STUDENT: S316611

127.17.0.1:80

my-web.1

10.0.0.1 10.0.0.2 | 10.0.0.3

[}
1
1
: my-web.2
1
L}

10.1.0.1:8080 10.1.0.2:8080 10.1.0.3:8080
my-web my-web my-web
Published Port Published Port Published Port

H ‘ H

[} [] [}

[} [} [}

___________ e o

Kes i ! ! N
] ] ] 1
! H : H 1
1 ' [l [ 1
I =-mmmmmmmm- I fmommmmmmmes I i =-mmmmmmmm- 1
L 2 1o ad 1o 2 (I
L ~ L 20 ~ L A ~ LI |
L 4 F 1o 4 . 1 4 - 1
: 1 1 Swarm H LI | 1 Swarm H L | 1 Swarm H L |
H : 1 Load-Balancer | : : 1 Load-Balancer | : : 1 Load-Balancer | : :
[ : 1 1o _4 1 U o= 1| 1 1o
L e T [ TS . 4 g I o " z L |
LI A o, 1 L,°" I eee==T | Py 1 1
L i Seee. LT § meee" L1 [
LI ] . W e e . | 1
[ J e 15 __oee=""" e 44 1 1
L { ad [ J s 1 [
LI d e aeeet 1 e ;e 1 [
[ § et et 1 R R 1 [
LI J gg2ise="" 1 Ssod oo 1 [
oy ol - 1 pmmmmE e ——— 1 11
oy 1 1 1
[ 1 1 L
L 1 (I
1y 1 L |
1y 1 L |
1y 1 L |
[ 1 L |
L 1 [
! 1
s U

Figure 2.2: Illustration of Docker Swarm Load-Balancing Algorithm [2]

2.3 HAProxy

HAProxy is single-threaded, event driven, non-blocking engine combining a very fast I/O later
with a priority based scheduler. The architecture is designed to move data as quickly as possi-
ble with the least possible operation keeping in the forwarding of data in mind. Data does not
reach the higher level in OS model while performing offering a bypass mechanism at each level.
HAProxy let the kernel do that most processing work and avoid certain operation when it guesses
they could be grouped later. Typically 15% of the processing time spent in HAProxy versus
85% in the kernel TCP or HTTP close mode. Also the HTTP keep-alive mode is about 30% for
HAProxy versus 70% for the kernel [3]. A single process in HAProxy can run as much as 300000
distinct proxies which requires only one process for all the instances. It is also possible to run
it over multiple processes. Usually this tool scale very well for HTTP keep-alive mode but the
performance that can be achieved out of single process generally outperforms common needs by
an order of magnitude. HAProxy only requires the haproxy executables and a configuration file
to run which makes it easy to use for the service providers. a syslog daemon need to accurately
configured for logging services and rotation services for logs. The configuration files are parsed
before stating and HAProxy tries to bind all the listening sockets. If anything fails then it refuses
to start. The run-times failure is next to none once HAProxy accepts to start.

HAProxy is an open source software used for TCP/HTTP load balancing. It runs on Linux,
FreeBSD, and Solaris. It is famous and widely used for its ability to keeps servers up by distribut-
ing the load across multiple servers. Among many terminologies used in HAProxy Access Control
List (ACL) contains a set of rules which has to be checked so that it can carry out some predefined
actions which can be blocking some requests or selecting the server to forward the request based
on the conditions. ACL rules applies to all the incoming traffic which increase the flexibility of
the traffic forwarding based on different factors such as some connection to the back end and
pattern matching. Back end is the group of servers that have been established for load-balancers.
It contains the IP addresses of the servers along with the port numbers)(if necessary) and chooses

8



ProJecT: 2 STUDENT: S316611

the load-balancing algorithm for efficient processing of the web-server access requests. Another
attribute of HAProxy is front end where the configuration define how the requests have to be
forwarded to the back end servers with ACL. The definition of front end contains IP addresses
and port numbers of the servers as well. HAProxy also have a health check-up feature which in
simple way checks the back end servers’ health. It is carried out by simply sending a TCP request
and find whether server listens to the specific ports and IP. Upon no response the load-balancer
can fire up a forwarding request to another server which is healthy. The unhealthy back end server
does not get any further request until it checks up as healthy server again. At Least, one server
should be healthy to process the request.

Among many load-balancing algorithms in HAProxy, the commonly used algorithm is round-robin
algorithm. The algorithm chooses the server sequentially in the list. Once it reaches the end of
the server list, the algorithm forwards the next request to the first server in the list again. The
weighted round-robin algorithm uses the weight allocation to the server to forward the request
while dynamic round-robin algorithm uses the real-time updated weight list of the server. The
least connection algorithm is also being used in HAProxy which selects the server with few active
transactions and then forwards the user requests to the back end. The source algorithm also
selects the server based on source IP addresses using the hash to connect to the machinating
server. Server overloading can be reduced using high availability algorithm which gets activated
when the primary (active) load-balancer gets overloaded. It fires up the secondary (passive) load-
balancer if the primary load-balancer fails. In this project, a primary load-balancer is used with
round-robin algorithm in order to forward all the incoming request to the back end server [4].

192.168.1.1 192.168.1.11 - 192.168.1.14 192.168.1.2
——————— T —— L ST — Fommmeeeen oo LT S
I I | | I _l_db
e +-t-t +ot-t +ot-t +et-t __D)
| LB1 | | A | | B | | C | | D | (-2
E + o+ o+ o+ o+ (__D)
HAProxy Back End Web Servers

A Simple HAPoxy Setup

Along with other important tools mentioned above several tools are used for monitoring and
testing purposes. The following tools are also utilised to setup the dynamic scaled cloud-cluster
with docker services.

2.4 Grafana

Grafana allows you to query, visualize, alert on and understand your metrics no matter where
they are stored. Create, explore, and share dashboards with your team and foster a data driven
culture. It is a beautiful dashboard for displaying various graphite metrics through a web browser.
Grafana is simple in use and easy to setup and maintain. It is almost like Kibana display style
but with many other features included. The Grafana project started at the beginning of the 2014
and since then it has shown an enormous amount of potential usage and functionality One of the
nicest feature of this tool is that the behind scenes for details or intricacies of how all the graphite
components works together are not needed to be worried about. This tool give abilities to bolt all
kids of alerting for the graphs which are based on various famous databases.



ProJecT: 2 STUDENT: S316611

2.5 InfluxDB

InfluxDB is a time-series database built on LevelDB. It is designed to support horizontal as well
as vertical scaling and it written in the language Go. InfluxDB was very easy to set up and fully
integrated with Grafana. It has an end-to-end platform which is ready to be deployed on the cloud
or via download. The tool is free of external dependencies, yet it can open a complex deployment
which is flexible enough to use. InfluxDB gives visibility with real-time access which helps to find
certain value in the data in quick fashion. Identity pattern, control systems, turning insight into
action even predicting the future of a node can be implied with this useful tool. It uses a powerful
engine which is fast and meets the demands of even the largest monitoring deployments.With the
native clustering functionality InfluxDB offers high availability while eliminating single points of
failure and simple scale out.

2.6 cAdvisor

cAdvisor (Container Advisor) provides container users an understanding of the resource usage
and performance characteristics of their running containers. It is a running daemon that collects,
aggregates, processes, and exports information about running containers. Specifically, for each
container it keeps resource isolation parameters, historical resource usage, histograms of complete
historical resource usage and network statistics. This data is exported by container and machine-
wide. cAdvisor has native support for Docker containers and should support just about any other
container type out of the box.

2.7 ApacheBench

Load testing is a good idea before any deployment. It’s nice to quickly establish a best-case sce-
nario for a project before running more detailed tests down the road. The ApacheBench tool (ab)
can load test servers by sending an arbitrary number of concurrent requests. This especially shows
how many requests per second the Apache installation is capable of serving. This is a tool for
benchmarking any Apache HT'TP server. It is designed to give an impression of how the current
Apache installation performs. AB is a single-threaded command line computer program comes
bundled with the standard Apache source distribution, and like the Apache web server itself, is
free, open source software and distributed under the terms of the Apache License. ApacheBench
will only use one operating system thread regardless of the concurrency level (specified by the -c
parameter). In some cases, especially when benchmarking high-capacity servers, a single instance
of ApacheBench can itself be a bottleneck. When using ApacheBench on hardware with multiple
processor cores, additional instances of ApacheBench may be used in parallel to fully saturate
more the target URL.

In the next Chapter, the technical design needed to meet this project goal which is to build
a framework with cluster of instances in the cloud (Docker swarm) with dynamic auto-scaling
feature enabled to handle the number of web-service requests.

10



ProJecT: 2 STUDENT: S316611

Chapter 3

Technical Design

The main focus of the technical design in this report are on the design principle and model to
achieve a cloud-based Dockerized swarm to deploy auto-scaled web services dynamically. The
design include several tools and their features such as Docker-Machine, Docker-Swarm, HAProxy,
InfluxDB, cAdvisor and Grafana. There is other alternatives tools exists with which similar
framework can be deployed. As it is discussed earlier in Chapter 2, the benefits of adapted tools
have a flexible and rudimentary factor which have high recommendation. It is a easy to setup
architecture that can be applied to any set of node in a network. The following sections explains
the design principle of the dynamic scaled cloud:

3.1 Design Principle

To start with the setup process individual steps have been carried to achieve the project goal.
These steps are briefly descried in following;:

e A server has been created in ALTO (OpenStack) cloud in order to deploy the Docker nodes,
setup Docker-Swarm among those nodes, running services and managing them from one
single point of control box. This server is selected as Master server and selected Automata
as the hostname of the machine. A floating IP will be associated to this server.

e Docker, Docker Machine and Docker Compose will be installed in Automata server.

e Using the Docker machine commands three Docker-Machines will be created on ALTO. The
machines will be identified as Swarm-Manager, Swarm-Workerl and Swarm-Worker2.
Docker will be pre-installed in all these three machines.

e A Docker-Swarm will be created using the above three machines and the Swarm-Manager
will be chosen as the swarm-leader. Additionally, Swarm-Workerl and Swarm-Worker2 will
be joining the same swam to make a cluster.

e In the Automata server monitoring tools Grafana, InfluxDB and cAdvisor will be de-
ployed as Docker-services.

e On the Swarm-Manager all the monitoring services will run but in the Swarm-Worker nodes
only the cAdvisor will be running to collect container metrics. This metrics will be collected
and viewed as graph in a Grafana which can also be used to alert other services to response.

A load-balancer (HAProxy) will be running on master server.

11



ProJecT: 2 STUDENT: S316611

A httpd service will be running in the swarm as a web service. The services will be deployed
to handle the incoming web request for other servers. This web-service is scalable on request
demand.

A bash script will be running on the master to check the current session for connection rate
metrics collected from HAProxy socket. This script makes the services scalable.

If the incoming request to the web-services rises above certain threshold Swarm-Master would
scale-up to generate more web-services.

If the incoming requests goes down under certain threshold then it Swarm-Master would
scale in to reduce the number of web-services.

Additionally, a Docker Visualiser container will be setup (on Swarm-Manager) to visualize
the services running on the Docker-Swarm.

Finally, ApacheBench will be used to set a test-bench for the swarm’s auto-scaling capa-
bilities on the cloud. The results will be collected and measure the performance of the scaled
cloud cluster.

12



ProJecT: 2

3.2 Design Model

STUDENT: S316611

The model (Fig. 3.1) explains the principle behind implemented technical design of this project.

! Internet

Replying Back
Requests

SWARM-MANAGER

(10.1.25.46)

3000:80/tcp

8086:80/tcp

InfluxDB

8080:80/tcp

cAdvisor

Docker

Visualizer

9898:9¥°SC°T 0T

0
0
Load-
Balancing
Incoming
Requests
-

SWARM-WORKER 1

(10.1.25.47)

8080:80/tcp

LA L T Y
e
-

—/

v
Docker-Machine Instance

.,
e,

e,
CADVISOR A

®
ey

15 Grafana

10.1.25.46:80

v
Docker-Machine Instance

128.39.121.92:1936

SWARM-WORKER2
(10.1.25.48)

8080:80/tcp

H
Docker‘—MachJ’Ene Instance

oCollect Container,
- Metrics e
f"

-
las
-
-

CADVISOR

"’
V o

P

<

@ influxdb

Push to
Database

_.-"CADVISOR

OpenStack (ALTO Cloud)

Figure 3.1: Hlustration of the Technical Design of the Dynamic Scaling Cloud Framework



ProJecT: 2 STUDENT: S316611

The above diagram represents the design principal for a network dynamically scaled Docker cloud
framework for web-services. The following section explains the software integration process that
has been adapted to fit the design principal in this project.

3.3 Design Architecture

This section is integrated into several subprocesses in order to cover implementation in different
part of the project. This part will give the readers thorough perception on the design setup and
the adjustment done on the tools used to attain the project goals.

Server setup

In the Alto cloud a server is created as instance in order to setup the tools for the technical
implementation. The instance name is set to Automata as it fits the profile of the project
task. The server is created from a Ubuntu 16.04 64 bit image and given a RAM amount of ca
8 GB. It has a large disk capacity with 80 GB of total disk space and 4 VCPUs. The instance
is given the connection to the nsa master net. To make it accessible over internet a floating
IP (128.39.121.92) is associated to this server. The mandatory software and services will be
installed and running in this server. It is an essential server for the entire setup as it is the
heart of cloud cluster in the network. Additionally, the a custom TCP rule is added to the ports
1936,/2377/3000/4000,/8086 /8687 /8690 in the default security group of the OpenStack in
order to make other container and services to communicate each other and to the other side of
the internet. This rule makes the ports available/open for the server to use. Later the use of this
rule will be discussed thoroughly. That is all needed to setup the server for the desired project
goals.

Docker setup

Docker is installed in the Automata server for building Docker-containers and services. Docker
services will all be spawned using Docker-Engine. The instruction to setup Docker for Ubuntu
Xenial 16.04 is taken from the official Docker website [5]. The setup requires to install linux-
image-extra-* packages, which allow Docker to use the aufs storage drivers. Then the packages to
allow apt to use a repository over HI'TPS needed to be installed followed by adding the Docker’s
official GPG key. And finally setting up the stable repository from Docker for Ubuntu Xenial
distribution and update the server before the Docker-Engine is installed. Docker is now running
in the master server.

Docker-Machine is also installed by running the following commands. This feature of Docker is
necessary since the nodes (instances) in swarm are going to be spawned or created as Docker-
Machine as we discussed earlier.

curl -L https://github.com/docker/machine/releases/download/v0.10.0/docker-machine
-‘uname -s‘-‘uname -m‘ >/tmp/docker-machine &&

chmod +x /tmp/docker-machine &&

sudo cp /tmp/docker-machine /usr/local/bin/docker-machine

Finally, the Docker-compose feature will be installed in the master server to manage the Docker-
services to be deployed, and managed.

14



ProJecT: 2 STUDENT: S316611

curl -L https://github.com/docker/compose/releases/download/1.13.0-rcl/docker-comp
ose-‘uname -s‘-‘uname -m‘ > /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

For the further setup the following versions of Docker tools are recommended:

e Docker: version 1.13 or higher, to support Docker Compose File version 3 and Swarm mode.
e Docker Machine: version 0.8 or higher.

e Docker Compose: version 1.10 or higher, to support Docker Compose file version 3.

Initial server setup

For this setup OpenStack driver are used to create the instances in the ALTO cloud. There are
many other drivers which are supported by Docker-Machine such as Amazon Web Services, Mi-
crosoft Azure, Digital Ocean, Exoscale, Google Compute Engine, Generic, Oracle VirtualBox etc.
In this project, OpenStack driver has been used.

To create a instance with Docker following commands need to be run first in this format along
with the desired host/server names.

docker-machine create -d openstack \
--openstack-flavor-name <flovor_name> \
--openstack-image-id <image_id> \
--openstack-sec-groups <security_group_name> \
--openstack-net-name <nsa_master_net> \
--openstack-ssh-user <user_name> \
--openstack-keypair-name <keypair_name> \
--openstack-private-key-file <path_to_private_key> \
<machine_name>

To save the IP of the server this command can be used:

export IP=$(docker-machine ssh <machine_name> ’ifconfig ens3 | grep "inet addr:"
| cut -d: -f2 | cut -d" " -f1’)

Following the previous steps, three nodes Swarm-Manager, Swarm-Workerl and Swarm-Worker2
are created which comes with Docker-Engine pre-installed. These nodes can be viewed via docker
node Is command in master server.

Swarm setup

Now context have to be switched to use the docker engine in the swarm-manager. This have be
done throughout rest of the setup demonstration in the docker engine of swarm-manager and not
in the Automata system. To do this, run the command eval ‘docker-machine env swarm-
manager‘. Now the docker engine is in Swarm-Manager node. To deploy the Swarm using
swarm-manager as the manager/leader the following command has been run:

15



ProJecT: 2 STUDENT: S316611

docker swarm init --advertise-addr ‘docker-machine ip swarm-manager*
Followed by the these commands to the two workers:

docker-machine ssh swarm-workerl docker swarm join --token ‘docker swarm join-token
-q worker‘ ‘docker-machine ip swarm-manager‘:2377

ocker-machine ssh swarm-worker2 docker swarm join --token ‘docker swarm join-token
dock h h ker2 dock tok ‘dock tok
-q worker‘ ‘docker-machine ip swarm-manager‘:2377

This passes the Join Token and the published IP when the swarm was created. docker swarm
join -q worker command get the token as worker. The default port for joining the swarm is set
to 2377. docker node Is command now shows the manager status of the swarm.

Monitor setup

Docker-compose (in version 3 deploy parameter for each service is introduced) can define the
entire stack with the deployment strategy with a single file and deploy it with one command.
The parameter defines where and how the containers are to be deployed. The docker-compose file
docker-stack.yml (Appendix: A) for the monitoring is run with the following command:

docker stack deploy -c docker-stack.yml monitor

The ymll file uses the InfluxDB image, create a volume named influx for persistent storage,
mount the volume to /var/lib/influxdb folder in the container. A deploy copy of InfluxDB
will be placed in the swarm-manager set in the deploy key part. Since the Docker-Engine is
running on the Swarm-Manager the command can be executed from here itself. depends key
part defines that all other services will be running InfluxDB. The service Grafana section uses the
grafana/grafana image and expose the port 3000 of the container to the port 80 of the host.
The router mesh algorithm of Swarm will be implied to access Grafana from port 80 of any host
in the swarm. A new volume called grafana created and mounted to the /var/lib/grafana
folder of the container and a copy of Grafana will be deployed in the swarm-manager. At the
end of the file, cAdvisor configuration has been set. The cAdvisor agent will be running on every
container and collect all metrics from the node and the containers running on them. With the
value .NODEL.ID hostnames are determined. When cAdvisor sends metrics to InfluxDB, it also
sends a tag machine that contains the hostname of cAdvisor container. After matching it with
the ID of the node running it, Docker stacks allows templating its name. Containers’ names are
used since the origin of the metrics are important to know [6]. The logtostderr value redirects
the logs generated by cAdvisor to stderr which then becomes easy to debug. docker only flag
is to specify the service runs in Docker containers only and the rest of the parameters are to
define where the metrics are to be pushed for storage. cAdvisor pushes the metrics to database in
InfluxDB server listening on port 8086. Influx service in the slack gets the metrics. All the ports
are exposed in stack. A volume is then set to collect the metrics from host and Docker system
and it is deployed globally (one instance of cAdvisor per node) in the swarm. Volume key are set
with the Influx and Grafana volumes. All the volumes are stored in the swarm-manager.

The docker stack command starts the services and downloads the necessary image and configu-
ration files. In the stack it is named as monitor. To store the metrics is InfluxDB a database
named cadvisor is created:

16



ProJecT: 2 STUDENT: S316611

docker exec ‘docker ps | grep -i influx | awk ’{print $1}’‘ influx -execute
>CREATE DATABASE cadvisor’

docker stack ls monitor shows the list of services named as monitor.

Now to setup Grafana with InfluxDB database IP of the Swarm-Manger need to be opened. To
add the InfluxDB as data-source in Grafana a data-source link must be created. Choose the
type as InfluxDB, the URL is http://influx:8086 and Access is proxy. This will point to the port
listened by the InfluxDB container. Finally, the database cadvisor is selected and click the Save
and Test button. This should give the message Data source is working. A dashboard.json
(Appendix: B) [7] is imported to the Grafana via Menu>Dashboard >Import Option.

Web-Service setup

A docker service has been created in purpose of the serve a web-service for the users. It is a
scalable service made with simple httpd Docker image. Port 8080 of the container is exposed
to the port 8080 of the host in each swarm-node (mainly whichever the services are currently
distributed and running on). A volume with small html file is attached to this service to define
the different servers. The command to create and run the web service is as follows:

docker service create --name my-web --publish 8080:80 --replicas 1 --mount type=
bind, src=/home/ubuntu/web/,dst=/usr/local/apache2/htdocs/ httpd

Later the web-services in the Docker Swarm will be used to auto-scale the services using the
assigned algorithm in Sec. 4.1.

Load-Balancer setup

Load-balancing service has been setup in order to balance (i.e., forward) incoming request to
server to accessible container in the swarm nodes. The round-robin algorithm has been set for the
back end servers. The load-balancing tool HAProxy has been installed and setup to forward the
traffic from front end to back end. The configuration file of the HAProxy is included in Appendix:
C. The file configures HAProxy to do set the metrics as follows:

1. In the global setting, dumping all the socket stats to the admin.sock file in /var/run/haproxy
folder which has 660 mode permission for use admin and the default settings has been set.

2. The frontend are named mysite, listens to host port 80, set mode to http and pointed to
the back-end named containers.

3. The back-end containers routes incoming connection request to server swarm-manager,
swarm-workerl and swarm-worker2 in round-robin fashion.

4. Finally, it listens to port 1936 to show the statistics of HAProxy gathered in a URI. It also
sets the username and password for the URI.

More discussion of HAProxy settings will be discussed on the next Chapter 4. Additional software
hatop is installed in Automata server in order to monitor HAProxy in action in real time (since
the browser version is not auto-refreshed).

17



ProJecT: 2 STUDENT: S316611

Scaling script

A script to automatically scale the Docker web-services in the swarm is attached to Appendix:
D. The application called Socket CAT (socat) has been used with this bash script which is like
Netcat but with security in mind to support chrooting. Socat works over various protocols and
through files, pipes, devices, TCP sockets, UNIX sockets, SSL etc. It is a command line based
utility that establishes two bidirectional byte streams and transfers data between them. Because
of the streams can be constructed from a a large set of different types of data sinks and sources,
socat can be used for different purposes.

The script starts with running every 10 secs and measure the metrics from HAProxy. Among
various parameters it checks for CurrConns* and MaxConn* value of the front-end site. The
socat command is used to gather metrics of a particular attributes of HAProxy:

echo "show info;show stat" | socat unix-connect:/var/run/haproxy/admin.sock stdio
grep ’<query_parameter>’ | awk ’{print $2}’

In the same manner, the script checks for ConnRate* and SessRate* value of the back-end
server. By applying a simple algorithm (Sec. 4.1) the script sets the new connection limit and
connection rate limit for HAProxy using socat. The following socat command sets the new value
for HAProxy:

socat /var/run/haproxy/admin.sock - <<< "set maxconn <parameter> $new_value"

Using the above socat configuration management the developers can avoid the requirement to
restarting the load-balancer while it is on the operation mode. At the end of each loop (10 secs)
the script sets the number of web-services based on 10% of the new connection rate limit set using
the following Docker command:

docker service scale <web-service>=$(new_value * 0.1)

The script is to implement the assigned algorithm which is discussed in more details in the next
Chapter 4 along with the flow diagram of the design principle.

Test-Bench setup

Choosing any of the local server or server located in different cloud ApacheBench need to be setup
for testing purposes. The test includes the performance of the web-servers in the Swarm and the
their incoming request handling capabilities. Installing Apache2 and Apache2-Utils will initialise
AutoBench by default. No further setup is necessary for this test-bench.

The initial system setup have been done and the technical design is ready to be conducted in
this infrastructure. The next Chapter will describe the technical design implementation of this
project.

* CurrConns=Current Connections per Session, MaxConn=Mazimum Connection per Session Limit, Con-
nRate=Connection Rate, SessRate=Session Rate

18



ProJecT: 2 STUDENT: S316611

Chapter 4

Design Principle

In the previous Chapter, the overall setup that has been done to scale a dynamic cluster of cloud
serving web-services. Tools such as Docker, HAProxy are integrated to work in auto-scaling mode
and to server monitoring purposes. The following sections discuss the auto-scaled cloud workflow
principle in a real-life scenario:

4.1 Algorithm

To prove the proof of concept an algorithm has been set to utilize auto-scaling in this framework.
Among various metrics collected by HAProxy many diverse options can be used to configure
and reconfigure the HAProxy settings. Measured values such as CPU usage, memory and power
consumption, incoming and outgoing traffic etc. can be observed and modify their inter-related
configuration to make the load-balancer work for this dynamic cloud cluster. Since the project
goal is to setup a scaled cloud based on incoming requests to query this algorithm is set to
accommodate incoming current connection and session settings of the load-balancer. It is no
doubt the front-end of the load-balancer is the first line of incoming request handling mechanism
where the frontend settings will transfer or forward the requests to the back-end servers. The
number of current connection in session are the big factor in this case. How many connection for
each sessions front-end will handle is up to the algorithm to decide how to tune the load-balancer
to adapt to this. After forwarding requests have been sent to back-end the number of connection
per nodes (swarm-nodes) are also need further adjusting. Below the algorithm set to fine tune
the load-balancer with the script (Appendix: D) is discussed. Certain values are chosen to set
parameters for testing purposes only:

i If the Current Connection Limit is Greater than and Equal to Maximum Current
Connection Default (This is set to a certain value. See the footer’) then the algorithm will
proceed to next step.

ii If the difference between Current Connection Limit and Variable Current Connection
is Greater than and Equal to Maximum Current Connection Difference’ then Cur-
rent Connection Limit will be deducted by certain valuel and set it as new value Current

T Mazimum Current Connection Default=2000, Mazimum Current Connection Default=2000, Minimum Ser-
vice Number Default = 20, Minimum Current Connection Difference=500, Maximum Current Connection
Difference=1000, Minimum Connection Rate Difference=1000, Maximum Connection Rate Difference=2000,
Digit=1000, Service Scaling Ratio=100

19



ProJecT: 2 STUDENT: S316611

il

v

vi

vil

Connection Limit. The Maximum Connection parameter of Global and Front-end
Server of load-balancer will be set to this new current connection limit.

If the difference between Current Connection Limit and Variable Current Connection
is Less than and Equal to Minimum Current Connection Difference’ then Current
Connection Limit will be added with certain value! and set it as new value Current
Connection Limit. The Maximum Connection parameter of Global and Front-end
Server of load-balancer will also be set to this new current connection limit.

If the Current Connection Rate Limit is Greater than and Equal to Mazximum Cur-
rent Connection Rate Default! AND the difference between current connection rate
limit and Variable Current Connection Rate are Greater than Maximum Connec-
tion Rate Difference’ then the Connection Rate Limit will be set by deducting a certain
value' from it. The Current Rate Limit of the Connections and Sessions parameter of
global settings in load-balancer are set to this new value.

Docker Service Scale In the web-services to the certain ratio based on new connection rate
limit value with the Connection per Service Ratio value!.

If the Current Connection Rate Limit is Greater than and Equal to Mazximum Cur-
rent Connection Rate Default’ AND the difference between current connection rate limit
and Variable Current Connection Rate are Less than Minimum Connection Rate
Difference’ then the Connection Rate Limit will be set by adding a certain value' to it.
The Current Rate Limit of the Connections and Sessions parameter of global settings
in load-balancer are set to this new value.

Docker Service Scale Up the web-services to the certain ratio based on division of new
connection rate limit value with the connection per service ratio value as well.

20



ProJecT: 2 STUDENT: S316611

The following algorithm (Algorithm 1) is the pseudo code representation of the above procedure:

Algorithm 1: Proposed Algorithm for Automated Service

Data: HAProxy Socket
Result: Fetched network status and adjust the number of services
1 initialization
2 while Current Connection Limit > Maximum Current Connection Default; do

3 if (Current Connection Limit - Variable Current Connection) > Mazimum Current
Connection Difference then
4 Connection Limit -= 1000
5 Global Maximum Connection = Connection Limit
6 Front-end Server Maximum Connection = Connection Limit
7 Connection Limit Rightarrow Reset
8 if (Current Connection Limit - Variable Current Connection) < Mazimum Current
Connection Difference then
9 Connection Limit += 1000
10 Global Maximum Connection = Connection Limit
11 Front-end Server Maximum Connection = Connection Limit
12 Connection Limit Rightarrow Reset
13 if Current Connection Rate Limit > Maxzimum Current Connection Rate Default then
14 if (Current Connection Rate Limit - Variable Current Connection Rate) >Mazimum
Connection Rate Difference then
15 Connection Rate Limit -= 1000
16 Global Connections Rate Limit = Connection Rate Limit
17 Global Sessions Rate Limit = Connection Rate Limit
18 Scale = (Connection Rate Limit / Service Scale Ratio)
19 Number of Services = Scale
20 Connection Rate Limit = Reset
21 if (Current Connection Rate Limit - Variable Current Connection Rate) <Minimum
Connection Rate Difference then
22 Connection Rate Limit += 1000
23 Global Connections Rate Limit = Connection Rate Limit
24 Global Sessions Rate Limit = Connection Rate Limit
25 Scale = (Connection Rate Limit / Service Scale Ratio)
26 Number of Services = Scale
27 Connection Rate Limit = Reset
28 else
29 L continue
30 else
31 L continue
32 done
33 if Current Connection Limit < Mazimum Current Connection Default then
34 Global Maximum Connection = Maximum Current Connection Default
35 Front-end Server Maximum Connection = Maximum Current Connection Default
36 Global Connections Rate Limit = Maximum Current Connection Rate Default
37 Global Sessions Rate Limit = Maximum Current Connection Rate Default
38 Number of Services = Minimum Docker Service
39 else

40 L continue

21



ProJecT: 2 STUDENT: S316611

4.2 Flow Diagram

Fig. 4.1 shows the flow diagram of the implementation of the infrastructure design. These are
the steps taken when a request to access web-servers are made to the cloud cluster:

Step: 1

Step: 2

Step: 3

Step: 4

Step: 5

Step: 6

Step: 7

Step: 8

Step: 9

Step: 10

Step: 11

Step: 12

The incoming web-service access request comes from the other side of the internet (or
locally) and reaches the Automata master server.

In the front-end setting of the load-balancer, the value of current connection limit is
checked.

If the value is more than certain value (default value set to 2000) the current connection
limit and variable ongoing session is checked.

If the difference between the current connection limit and variable incoming session is
more than certain value (set to 1000) then new current connection limit is set by decreas-
ing with certain value (set to 1000). However, If the difference is less than certain value
(set to 500) the new current connection limit is set by increasing with certain value (set
to 1000 also). Both global and front-end server maximum connection limit is are now set
to new connection limit.

Load-balancer distributes the load in round-robin fashion between the Docker swarm
nodes.

In the back-end of setting of the load-balancer, the current connection rate limit is
checked.

If the value is more than certain value (default value set to 2000) the current connection
rate limit and variable ongoing connection rate is checked.

cAdvisor collects metrics from swarm nodes, send to InfluxDB and creates graphs in
Grafana (this step is only for purpose of monitoring the cluster).

If the difference between the current connection rate limit and variable ongoing connection
rate is more than certain value (set to 2000) then new current connection rate limit is set
by decreasing with certain value. Nevertheless, if the difference is less than certain value
(set to 1000) the new current connection rate limit is set by increasing with certain value
as well (set to 1000). Both rate limit of connections and sessions of the global settings of
the load-balancer are set to new connection rate limit in either case.

If the difference is too high, the number of Docker web-services are scaled up to certain
ratio (set to 100:1). On the other hand, if the difference is too low then the number of
Docker web-services are scaled in to certain ratio again. The incoming requests are then
sent (distributed) to different Docker web-services in the swarm cluster.

Web-services then replies back to the request.

The replies are then sent back to the client /s.

22



ProJecT: 2 STUDENT:

Request sent

[Request reaches Automata]

i

H
@
Front-End:

Is current connection limit
greater than 2000?

Current connection
set to 2000

Y . S

<
@

T
H
]
e
'

® v

Check The difference between maximum
R il current connection limit and variable
current connection in Front-End

Front-End:
Is the difference

New current connection
limit is current connection

New current connection
limit is current connection

limit - 1000. Set maxConn :::: :ﬁ:z limit + 1000. Set maxConn
value of global and front- [ jo00 ™77 """ see | value of global and front-

more than 1000 or less
than 500?

end server to new current
connection limit

end server to new current
connection limit

(:) Back-End: (:)
J Haproxy load-balance between ‘4

kel three swarm-servers in
round-robin fashion.

Back-End:
Is current connection rate
limit greater than 20002

]
=
@ @
A 4

Check The difference between maximum
current connection rate limit and variable

H
H
cAdvisor collects
: : metrics
current connection rate in Front-End

New current connection rate New current connection rate
limit is current connection (:) s the difference between (:) limit is current connection
rate l?mit - 1000. §et More current connection rate limit Less rate l%mit + 1000. §et
connections and sessions - ;2;3--- and variable current connection -';g;; connections and sessions
rate of global settings to rate more than 2000 or rate of global settings to
new current connection rate less than 1000? new current connection rate
limit limit
T T
H 1
H '

Scale Scale
In up

v v

S316611

connetion rate limit my-web.1, my-web.2,... connection rate limit

Scale in to 10% of new current Request is send it to different Scale up to 10% of new current

@
Web-services reply back
@ ¥
200 OK from server

Figure 4.1: Illustration of the Flow Diagram of Design Implementation in the Framework

23



ProJecT: 2 STUDENT: S316611

Chapter 5

Discussion

In this Chapter, the overall success and future possible strategy can be taken are discussed.
The script auto-scaling.sh determines how many web-services (my-web) will be running after
each iteration of system check. The various results are collected using the monitoring ser-
vices Grafana, InfluxDB that are used in this project. The monitoring services can be ob-
served in the link http://128.39.121.92:8687% and HAProxy statistics can be observed in
http://128.39.121.92:1936. Docker visualiser is showing in the http://128.39.121.92:8690
(optional monitoring).

5.1 Test Scenario

ApacheBench were setup to test the auto-scaling capabilities of our design architecture in a small
scale. The test scenario is the smaller scale of real-life scenario which gives the readers a small
projection of functionalities of the cloud system. The test was carried by running the following
command from a different server:

ab -n <number-of-requests> -c <number-of-concurrency> [http[s]://Jhostnamel[:port]
/path

Here, -n option is for number of requests to perform and -c option is for number of multiple
requests to make at a time. We decided to send 100000 requests to perform with 1000 concur-
rency to make at a time to the IP address (128.39.121.92) on port 80 which will redirect and
balance each load to Docker-Swarm nodes in round-robin fashion. Multiple tests were ongoing
simultaneously for the test to enforce the real-life test bench scenarios on the web-servers. While
the test runs, the script adjusts the number of web-services based on incoming requests thus the
dynamic scaled cloud-based network in achieved.

5.2 Test Results

The test was successful in a small scale and the script effectively scale the network in dynamical
way. The test results are included in with some figures and brief description is given for readers

tusername: guest, password: lifeishard

24


http://128.39.121.92:8687/dashboard/db/cadvisor?refresh=15m&orgId=1
http://128.39.121.92:1936
http://128.39.121.92:8690

ProJecT: 2 STUDENT: S316611

account.

Fig. 5.1 shows the network status of the Docker-Swarm nodes when the number of incoming
requests are increased and adapted. This value is collected by cAdvisor and with InfluxDB query
to Grafana the network status of the cluster shows up in the Grafana graph. It shows the network
status of the hosts and the container with services increases and decrease according to the number
of connection to the Docker-Swarm cloud. From the Fig. 5.1 it is clear that the number of services
are auto-scaled up when the number of connection request from clients rises up and also auto-
scaling in method bring down the service numbers of the web-service when the connection requests
goes down.

Network

Figure 5.1: Network State of the Docker-Swarm

Fig. 5.2 and 5.3 shows the CPU and Memory status respectively of the Docker-Swarm nodes
while the test is running which also can be found on Grafana. The results shows the performance
of the setup while we increase the concurrency of the test bench with ApacheBench and the CPU
and Memory consumption of the Docker-Machines along with their assigned random containers
respectively. The containers/services were spread assigned to random Swarm nodes by the Swarm-
Manager when the new scaling requests have been made. The services stays at the same node
until it is assigned to removed while scaling down. The graph gives us a good insight of the system
summarization and helps us monitor the servers accurately.

25



ProJecT: 2 STUDENT: S316611

Figure 5.2: CPU State of the Docker-Swarm

Memory

Figure 5.3: Memory State of the Docker-Swarm

26



ProJecT: 2

In the Fig. 5.4 the status of HAProxy is shown for the Docker-Machine Cluster when the test in
running against the test bench. The performance of the load-balancer can be observed from the
statistics of the HAProxy which is also being adapted in order to script handle the self-regulating
scaling concept. The figure (Fig. 5.5) shows the status of the Docker-Swarm with to give our

readers a simple view of what is the recent situation of the swarm.

HAProxy
Statistics Report for pid 968

STUDENT: S316611

> General process Information

pld= 968 (process #1, noproc = 1)

Uptme = 3 hédm0fs

system limils: memmex = wlnited, uimitn = 100035
matsock = 00035, maxconn = 1000; maxpipes = 0

cuent conns = 1000, cumentpipes = O comn e = 417l
Running tasks: 10/1008; de =& %

myslte

13431

active U backup UP

actve U, goingdown  {backup UP, gongdown
active W, qongup | bacup DO, gong
active o backup DOWN | ot checked

actve of backup DOWN formeinenance (MANT)
actve ot backup SOFT STOPPED for manference
Note:NOLBTORAIN' = UP wih oad-selancing ésabled.

945104 480 865635 171033 0 0 14

OPEN

Display opton:

o Hie DORN servers
o Refeshnow
o CoVenput

External resources:
o Prinary s
¢ s 1)

+ Qnne mancal

S [l IR I 2 [ ww w0 el LoKin 0ims iy W
st o o | w m T R 5406080 [ Wi pe e 0 ol LOKin s Y a o
samntel o 0 CIRC R 4515 [ s nw w0 b LI0UT 2 B IR
et [l T W m e e 05 w0 e o 0 e s s 0 enisslp 1 [ 0 kg
Fronend 3 3 - i 1 2000 4 1% T8 0 0 0 OPEN

[ et [ o ] o o w m o 0 d [T o JoJo] 0 [

Figure 5.4: HAProxy Status of the Cluster

27




ProJecT: 2 STUDENT: S316611

monitor_influx

monitor_grafana

Figure 5.5: Visualisation of the Docker-Swarm

28



ProJecT: 2

STUDENT: S316611

To give readers a notion of how the scripting adjust the values of HAProxy, the following Table
5.1 is included. The table gives an example output of when the script adjust the value of different
network parameters in different time points.

Table 5.1: Example of Auto-Scaling with HAProxy

Front-End Back-End
Time Point | CurrConns | MaxConn | CurrConnRateLimit | CurrConnRate | Number of Services
A 2000 5000 2000 400 20
B 3000 1600 3000 1200 30
C 3000 2300 3000 1500 30
D 2000 800 2000 800 20

The time graph is represented with the following figure (Fig. 5.6):

Time vs Connection Status (Last 30 mins)

14000 4

12000 4

10000

8000 4

Connection Rate

6000

4000 4
ffx

vw

2000, ]””

‘lmu&"\m ‘/ “NA m'\“w

SREOBIORBROBC.
X

—

i)

00K RO ORI K S S SRR

— curr. Conn.

— Max. Conn.

—— curr. Conn, Rate
Curr. Conn. Rate Limit

X services

M0 K XOREEK SR X,

o

16 16:48

16 16:53

16 16:58

Figure 5.6: Time vs Connection Status

16 17:03
Time

1617:13

1617:18

In the graph the last 30 minutes of network status of the cluster have been included. It clearly
shows the how the maximum connection limit (blue line) of load-balancer has been adjusted
according to the current connection (green line) status in a given time. At the same time, the
) has been adjust according to the number incoming

connection connection rate limit (

current connection rate (cyan line). And finally, the web-services (red x) are scaled to up and in
according to the current connection rate limit that was set for the current connection rate.

29




ProJecT: 2 STUDENT: S316611

5.3 Possible Future Work

e Ideally we should have use a monitoring service which can watch over the nodes and based
on some alerts will trigger the scaling of the services. Monitoring tools such as Consul or
similar can be used to check the health of the nodes and change the configuration files of
load-balancer and restart the services. This should be a optimized setup for such framework.

e The number of Docker-Swarm nodes can be also adjusted depending the number of requests.
This requires the script to spawn or add and likewise delete the nodes when the load-balancer
reaches its global maximum configuration limits. For real-life scenario the not only the
number of services but also the number of nodes needed to be scaled as well.

e As we discussed earlier, in the script we could have consider other metrics of load-balancing
attributes rather than just considering network settings. This will make this cluster more
vibrant and dynamic.

e A backup/secondary load-balancer could be added in case of primary load-balancer fails or
shuts down.

30



ProJecT: 2 STUDENT: S316611

Chapter 6

Conclusion

In this project, we learned the basic principle behind the auto-scaling of the cloud-based services
and advantage of using appropriate load-balancing of the cloud-cluster. In the process of adapting
automation of scaling services we used the some of the most recognised and well-structured tools
like Docker-Engine, HAProxy along with the OpenStack cloud-platform. There is not just one
exact way to complete this project instead we found many other different ways to complete this
assignment. The approach we chose is not only simple to setup but also an efficient way to achieve
the project goals.

This particular project enable us to dive deep into the cluster infrastructure which help us under-
standing the complex mechanism behind web-services design and load-balancer algorithms and
engineering that ties the different enabling technology together. We have learned thoroughly the
procedure of using auto-scaling in real-life Docker based cloud system environment which can help
us to do better research in this noble field of web-service management and developer operations.

31



ProJecT: 2 STUDENT: S316611

References

[1]

2]

13l

4]

15]

[6]

7]

Docker Developer Team, “ Docker Machine Overview”, [online] Available:
https://docs.docker.com/machine/overview/

Docker Developer Team, “Swarm Mode Overview”, [online| Available:
https://docs.docker.com/engine/swarm/

HAProxy Developer Team, “ How HAProxy Works”, [online| Available:
https://cbonte.github.io/haproxy-dconv/1.8/intro.html#3.2

Mitchell Anicas, “An Introduction to HAProxy and Load Balancing Concepts”, [online]
Available: https://www.digitalocean.com/community/tutorials/
an-introduction-to-haproxy-and-load-balancing-concepts

Docker Team, “Get Docker for Ubuntu”, |online| Available:
https://docs.docker.com/engine/installation/linux/ubuntu/

Moby, “Create services using templates”, [online| Available:
https://github.com/moby/moby/blob/master/docs/reference/commandline/service_
create.md#create-services-using-templates

Botleg, “Swarm-Monitoring”, |online| Available:
https://github.com/botleg/swarm-monitoring/blob/master/dashboard. json

32


https://docs.docker.com/machine/overview/
https://docs.docker.com/engine/swarm/
https://cbonte.github.io/haproxy-dconv/1.8/intro.html#3.2
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://docs.docker.com/engine/installation/linux/ubuntu/
https://github.com/moby/moby/blob/master/docs/reference/commandline/service_create.md#create-services-using-templates
https://github.com/moby/moby/blob/master/docs/reference/commandline/service_create.md#create-services-using-templates
https://github.com/botleg/swarm-monitoring/blob/master/dashboard.json

Appendices



0 ~J O O i W N

[ I R I R N N T R e e e e o il o Tl
N O Utk WO OO0 Utk WO

28
29
30
31

32
33
34
35
36
37
38
39
40
41

PRrROJECT:

2

Appendix A

docker-stack.yml

STUDENT: S316611

version: '3’
services :
influx:
image: influxdb
volumes:
— influx:/var/lib/influxdb
deploy:
replicas: 1
placement :
constraints:
— node.role = manager
grafana:
image: grafana/grafana
ports:
— 0.0.0.0:80:3000
volumes :

— grafana:/var/lib/grafana
depends_on:
— influx
deploy:
replicas: 1
placement :
constraints:

— node.role = manager

cadvisor:

image:

google /cadvisor

hostname: ’{{.Node.ID}}’
command: —logtostderr —docker only —storage driver=influxdb —storage driver db

=cadvisor —storage driver host=influx:8086

volumes :

_/:

/rootfs:ro

— /var/run:/var/run:rw

— /sys:/sys:ro

— /var/lib/docker /:/var/lib /docker:ro
depends_on:

— influx
deploy:

mode: global

34




ProJecT: 2 STUDENT: S316611

42| volumes :

43 influx:
44 driver: local
45 grafana:
46 driver: local

35



0 ~J O O i W N

SO S 0 L LW LW W WWWWWNNNNNNNNNNRFR R~ RFRFRRFRRF B2 B2 & &
N O OO0 Uik WN O OO0 Uik WO WOWOOO Uik Wh— OO

ProJecT: 2

Appendix B

dashboard.json
{
" inputs": |
{
"name": "DS INFLUX",
"label": "influx",
"description": "",
"type": "datasource",
"pluginld": "influxdb",
"pluginName": "InfluxDB"
}
] )
" requires": |
{
"type": "grafana',
"id": "grafana",
"name": "Grafana",
"version": "4.2.0"
}7
{
"type": llpanel"7
llidU: ngaphﬂ’
"name": "Graph",
"version": ""
}7
{
"type": "datasource",
"id": "influxdb",
"name": "InfluxDB",
"version": "1.0.0"
}
] )
"annotations": {
"list ": ]

} )

"editable": true,
"gnetld": null,
"graphTooltip": 0,
"hideControls": false ,
"id": null,

"links": [],
"refresh": false ,
"rows": |

36

STUDENT: S316611




43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96

PROJECT: 2
{
"collapse": false,
"height": 250,
"panels": |
"aliasColors": {},
"bars": false ,

n

n

n

datasource": "${DS INFLUX}",
Fill": 1,
id": 1,

"legend ": {

"avg": false ,
"current ": false ,
"max": false ,
min": false ,
"show": true,
"total": false ,
"values": false

n

}

n

n

n

n

n

n

n

n

n

n

n

n

n

lines": true,
linewidth": 1,
links": [],
nullPointMode": "null",
percentage": false ,
pointradius": 5,
points": false ,
renderer": "flot",
seriesOverrides": |[],
span": 6,

stack": false ,
steppedLine": false ,
targets": |

{

"alias ":

Ja
"dsType": "influxdb",
"groupBy": |
{
"params": |
"machine"
],
lltype ": ||tagl|
b,
{
"params": |
"container name'

E

lltype l|: "tag"

1

|,
"measurement": "memory usage",
"policy": "default",

"Memory {host: $tag machine, container:

STUDENT: S316611

$tag container name

"query": "SELECT \"value\" FROM \"memory usage\" WHERE \"
container name\" =~ /~$container$/ AND \"machine\" =~ /~$host$/

AND $timeFilter",
"rawQuery": false ,
Hrefld ": "A"’

37




97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

ProJecT: 2

"resultFormat": "time series",
"select ": |

[

{

"params": |
"value"
|
n ypeﬂ: ||fie1d"
}
|
Ik
"tags": |
{
"key": "container name",
"operator": "="",
"value": "/~ $container$x/"

"condition": "AND",
"key ": "machine",
"operator": "="",
"value": "/~ $host$ /"
}
|
}

] )
"thresholds": [],
"timeFrom": null,
"timeShift": null,
"title": "Memory",
"tooltip": {
"shared": true,
"sort": 0,
"value type": "individual"
}7
thpe l|: llgraph",
"xaxis": {
"mode": "time",
"name": null,
"show": true,
"values": []
}’
"yaxes": |
{
"format": "decbytes",
"label": null,
"logBase": 1,
"max": null,
min": null,
"show": true

n

"format": "short",
"label": null,
"logBase": 1,
"max": null,

"min": null,

38

STUDENT: S316611




154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

ProJecT: 2

"show": true

"aliasColors": {},
"bars": false ,
"datasource":
"Fill": 1,
"id"t 27
"legend ": {
"avg": false ,
"current ": false ,
"max": false ,
min": false ,
"show": true,
"total": false,
"values": false
}
"lines true ,
"linewidth": 1,
"links": [],
"nullPointMode": "null",
"percentage": false ,
"pointradius": 5,
"points": false ,
"renderer": "flot",
"seriesOverrides": [],
"span": 6,
"stack": false ,
"steppedLine": false ,
"targets": |

{

"§{DS_INFLUX}",

n

n.

"alias ":
"dsType": "influxdb",

"groupBy ": |
"params": |

"machine"

n

IS
{

,ype ": l|tagll

"params": |
"container name"

I,

n ype ": "tagll

e

"measurement ": "cpu_usage_ total",
"policy": "default",
llrefIdll: HA”7
"resultFormat": "time series",
"select ": |
[
{

"params": |

39

STUDENT: S316611

"CPU {host: $tag machine, container: $tag container name}",




ProJecT: 2 STUDENT: S316611

211 "value"

212 ],

213 "type": "field"

214 },

215 {

216 "params": |

217 "10s"

218 |,

219 "type": "derivative"
220 }

221 ]

222 ],

223 "tags": |

224 {

225 "key": "container name",
226 "operator": "=7",

227 "value": "/~ $container$x/"
228
229
230 "condition": "AND",
231 "key ": "machine",
232 "operator": "=7",
233 "value": "/~ 8$host$ /"
234 }

235 ]

236 }

237 |,

238 "thresholds": [],

239 "timeFrom": null,

240 "timeShift": null,

241 "title": "CPU",

242 "tooltip ": {

243 "shared": true,

244 "sort": O,

245 "value type": "individual"
246 3,

247 "type": "graph",

248 "xaxis": {

249 "mode": "time",

250 "name": null,

251 "show": true,

252 "values": []

253 1,

254 "yaxes": |

255 {

256 "format": "hertz",

257 "label": null,

258 "logBase": 1,

259 "max": null,

260 "min": null,

261 "show": true

262 },

263 {

264 "format": "short",

265 "label": null,

266 "logBase": 1,

267 "max": null,

i

40




268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323

PROJECT: 2
"min": null,
"show": true
}
I
}
|,
"repeat": null,
"repeatlteration": null,

"repeatRowId": null,
"showTitle": false ,
"title": "Dashboard Row",
"titleSize": "h6"

"collapse": false,
"height": 250,
"panels": |

"aliasColors": {},

"bars": false ,

"datasource": "${DS INFLUX}",

"fill " 1,

"id": 3,

"legend ": {
"avg": false ,
"current ": false ,
"max": false ,

min": false ,
"show": true,
"total": false,
"values": false

}7

"lines": true,

"linewidth": 1,

"links ": [],

"nullPointMode": "null",

"percentage": false ,

"pointradius": 5,

"points": false ,

"renderer": "flot",

"seriesOverrides": [],

"span": 6,

"stack": false,

"steppedLine": false ,

n

"targets": |
"alias": "Usage {host: $tag machine, container:
n
"dsT}j;/p’e": "influxdb ",
"groupBy ": |
{
"params": |
"container name"
|
n y.pe": "tag”
I
{

41

STUDENT: S316611

$tag container name




324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

ProJecT: 2

"params": |

"machine"
|
Iltype H: ”tag”

}
I
"measurement": "fs usage",
"policy": "default",
Href]:d ll: HAll
"resultFormat ":
"select ": |

[

{

"time series",

"params": |
"value"
|]|7ype||: llfield"
}

|
|,
"tags": |
{
”key ":
"operator":
"value": "/~ $host$ /"

"machine",
n_~-n
- ?

"condition": "AND",

"key": "container name",
"operator": "="",

"value": "/~ $container$x/"

}
|

b
{

"alias ":
n
)
"dsType": "influxdb",
"groupBy ": |

"Limit {host: $tag machine,

"params": |
"container name"

n

IS
{

,ype ": l|tagll

"params": |
"machine"

],

n ype ": l|tagl|
}

I,

"measurement ": "fs_ limit",
"policy": "default",
llrefId ll: HB”7
"resultFormat ":
"select ": |

"time series",

42

STUDENT: S316611

container: $tag container name




380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

ProJecT: 2

[
{
"params": |
"value"
],
"type": "field"
}
J
|
"tags": |

{

"key ": "machine",
"operator": "="",

"value": "/~ $host$ /"

"condition": "AND",
"key": "container name",
"OperatOI‘ H: l|:"'l|7
"value": "/~ $container$x/"
}
]
}
] )
"thresholds": [],
"timeFrom": null,
"timeShift": null,
"title": "File System",
"tooltip": {
"shared": true,
"sort": O,
"value type": "individual"
}’
n ype ||: Ilgraph n ,
"xaxis": {
"mode": "time",
"name": null,
"show": true,
"values": []
}a
"yaxes": |
{
"format": "decbytes",
"label": null,
"logBase": 1,
"max": null,
"min": null,
"show": true

~

"format": "short",
"label": null,
"logBase": 1,
"max": null,
"min": null,
"show": true

43

STUDENT: S316611




437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

ProJecT: 2

"aliasColors ":
"bars": false ,
"datasource":
"fill": 1,
Hid”: 4,
"legend ": {

"avg": false ,

"current ": false,

"max": false ,
min": false ,

"show": true,

"total": false,

"values": false
}7
"lines true
"linewidth": 1,
"links": [],
"nullPointMode": "null",
"percentage": false ,
"pointradius": 5,
"points": false ,
"renderer": "flot",
"seriesOverrides ":
"span": 6,
"stack": false ,
"steppedLine":
"targets": |

{

{}7

"${DS_INFLUX}",

n

"n.

[,

false ,

"alias": "RX {host: $tag machine,
"dsType": "influxdb",
"groupBy": |

"params": |
"container name"

|

lltype ": ”tag”

)

"params": |
"machine"
I,
"type": "tag"
}
|,
"measurement": "rx bytes",
"policy": "default",
llrefId n"n. "A”
- bl
"resultFormat ":
"select ": |

[
{

"time series",

"params": |
"value"

I
44

STUDENT: S316611

container: $tag container name}",




494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

ProJecT: 2

"type": "field"
I
{
"params": |
HlOS"
|
"type": "derivative"
}
|
I

ll’agsll: [

{

"key": "machine",
"operator": "="",

"value": "/~ $host$ /"

"condition": "AND",

"key ": "container name",
"operator": "="",

"value": "/~ $container$x/"

’

}
{

STUDENT: S316611

"alias": "TX {host: $tag machine, container: $tag container name}",

"dsType": "influxdb",
"groupBy": |

"params": |
"container name"

|

lltype ": l|tagl|
IS
{
"params": |
"machine"
|
"type": "tag"
}
|,
"measurement": "tx bytes",
"policy": "default",
llrefId ll: "Bll
"resultFormat": "time series",
"select ": |
[
{
"params": |
"value"
|
n y.peH: l|field"
{
"params": |
Nlos"

I
45




551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
o877
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

ProJecT: 2

"type": "derivative"

}
]
]’
"tags":

{

"key

[

": "machine",

n_=-n

"operator": ,
"value": "/~ $host$ /"

"condition": "AND",

"key

": "container name",

n_=-n

"operator": ,
"value": "/~ $container$x/"

}
|
}
]

"timeFrom ":
"timeShift ":

"thresholds":

[,

null ,
null |

"title": "Network",
"tooltip": {

"shared": true,

"sort": O,

"value type": "individual"
}a
"type": "graph",
"xaxis": {

"mode": "time",

"name": null,

"show": true,

"values": []

}7
"yaxes": |
{
"format": "Bps",
"label": null,
"logBase": 1,
"max": null,
min": null,
"show": true

n

"format": "short",
"label": null,
"logBase": 1,
"max": null,
"min": null,

"show": true

}
I
}
] ;

"repeat": null,
"repeatlteration": null,

46

STUDENT: S316611




608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663

ProJecT: 2 STUDENT: S316611

"repeatRowlId": null,
"showTitle": false ,
"title": "Dashboard Row",
"titleSize": "h6"
}
] )
"schemaVersion": 14,
"style": "dark",
l|tags N: [] ,
"templating": {
"list ": |
{
"allValue": "",
"current": {},
"datasource": "${DS INFLUX}",
"hide": 0,
"includeAll": true,
"label": "Host",
"multi": false,
"name": "host",
"options": [],
"query ": "show tag values with key = \"machine\"",
"refresh": 1,
"regeX": n l|’
"sort": O,
"tagValuesQuery ": ""|
"tags": |[],
"tagsQuery ": "',
"type": "query",
"useTags": false
}7
{
"allValue": null,
"current ": {},
"datasource": "${DS INFLUX}",
"hide": 0,
"includeAll": false,
"label": "Container",
"multi": false,
"name": "container",
"options": [],
"query": "show tag values with key = \"container name\" WHERE machine =~
/"~ $host$ /",
"refresh": 1,
"regEX": li/([’\.]Jr)/ll’
"sort": O,
"tagValuesQuery": ""
"tags ": ” ,
"tagsQuery ": "',
"type": "query",
"useTags": false
}
I
}’
"time": {
"from": "now—1h",
" to n : HnOWH

47




664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

ProJecT: 2

} )

"timepicker": {

"refresh intervals":

"5S n ,
"10g" ,
"30S n ,
H]_mH’
"5111",
l|15m|l ,
HSOmH ,
"1h" ,
l|2h|l ,
llldll
]7

"time options":

||5m|l’
"15m" ,
l|1h|l ,
"6h" ,
"12h" ,
ll24h!l ,
noqn ,
nrqn ,
ll30dll
J
}7

"timezone ":

[

"browser",

"title": "cAdvisor",

"version":

[

STUDENT: S316611

48




0 ~J O O i W N

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

ProJecT: 2 STUDENT: S316611

Appendix C

haproxy.cfg
global
log /dev/log local0
log /dev/log locall notice
chroot /var/lib /haproxy
stats socket /run/haproxy/admin.sock mode 660 level admin
stats timeout 30s
user haproxy
group haproxy

daemon

maxconn 50000

# Default SSL material locations
ca—base /etc/ssl/certs

crt—base /etc/ssl/private

# Default ciphers to use on SSL—enabled listening sockets.

# For more information, see ciphers(1SSL). This list is from:

# https://hynek.me/articles/hardening—your—web—servers—ssl—ciphers/

ssl—default —bind—ciphers ECDHHAESGCM:DH+AESGCM: ECDH+AES256 : DH+AES256 : ECDH+AES128
: DHHAES : ECDH+3DES : DH4-3DES : RSAHAESGCM : RSA+AES : RSA+3DES : aNULL : ' MD5: | DSS

ssl —default —bind—options no—sslv3

defaults

log global
mode http
option httplog
option dontlognull

timeout connect 5000

timeout client 50000

timeout server 50000
errorfile 400 /etc/haproxy/errors /400.http
errorfile 403 /etc/haproxy/errors/403.http
errorfile 408 /etc/haproxy/errors /408.http
errorfile 500 /etc/haproxy/errors/500.http
errorfile 502 /etc/haproxy/errors/502.http
errorfile 503 /etc/haproxy/errors/503.http
errorfile 504 /etc/haproxy/errors /504.http

# Configure HAProxy to listen on port 80
frontend mysite

bind *:80

mode http

default backend containers

49




ProJecT: 2 STUDENT: S316611

42
43|# Configure HAProxy to route requests to swarm nodes on port 8080
44| backend containers

45 mode http

46 balance roundrobin

47 server swarm—manager 10.1.25.46:8080 check

48 server swarm—workerl 10.1.25.47:8080 check

49 server swarm—worker2 10.1.25.48:8080 check

50
51|# Configure HAProxy to listen on port 1936 and show the statistics in uri
52| listen stats

53 bind *:1936

54 stats enable

55 stats uri /

56 stats hide—version

57 stats auth samiul:lifeishard

50



O R

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

ProJecT: 2 STUDENT: S316611

Appendix D

auto-scaling.sh

#!/bin /bash

clear

VarCurrConn=$ (echo "show info;show stat" | socat unix—connect:/var/run/haproxy/
admin.sock stdio | grep ’CurrConns’ | awk ’{print $2}7)

MaxCurrConn=$ (echo "show info;show stat" | socat unix—connect:/var/run/haproxy/
admin.sock stdio | grep ’'Maxconn’ | awk ’'{print $2}7)

VarConnRate=$ (echo "show info;show stat" | socat unix—connect:/var/run/haproxy/
admin.sock stdio | grep ’~ConnRate:’ | awk ’{print $2}7)

MaxConnRate=$ (echo "show info;show stat" | socat unix—connect:/var/run/haproxy/
admin.sock stdio | grep ’~ConnRateLimit:’ | awk ’{print $2}7)

DockerPs=$(docker service ps my—web | grep "my—web.x" | grep "Running" | wc —1)

echo "Variable Current Connection :" $VarCurrConn

echo "Maximum Current Connection Limit :" $MaxCurrConn

echo "Variable Connetion Rate : "$VarConnRate

echo "Maximum Connection Rate Limit :" $MaxConnRate

printf "‘date +’%d—Y%a%y—%T’ ¢,$VarCurrConn ,$MaxCurrConn , $VarConnRate , $MaxConnRate ,
$DockerPs\n" >> file.csv

MaxConnDefault=2000
MaxConnRateDefault=2000
ServScaleRatio=100
MinDockerServ=10
MinConnDiff=500
MaxConnDiff=1000
MinConnRateDiff=1000
MaxConnRateDiff=2000
Digit=1000

if [ "$((MaxCurrConn — VarCurrConn))" —le "$MinConnDiff" | ; then

printf "MaxCurrConn is less than VarrCurrConn\n"

ConnLimit="$ (( MaxCurrConn + Digit))"

echo "Connection Limits are now :" $ConnLimit

SetGlobal=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn global
$ConnLimit")

SetFrontend=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn
frontend mysite $ConnLimit")

printf "Session Limits are set for Global and Frontend to %d (increased)|\n\n
$ConnLimit

ConnLimit=0

"

51




ProJecT: 2 STUDENT: S316611

35| fi
36
37| if [ "$((MaxCurrConn — VarCurrConn))" —ge "$MaxConnDiff" | ; then

38 printf "MaxCurrConn is greater than VarrCurrConn\n"

39| ConnLimit="$((MaxCurrConn — Digit))"

40| echo "Connection Limits are now :" $ConnLimit

41 SetGlobal=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn global
$ConnLimit")

42 SetFrontend=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn frontend
mysite $ConnLimit")

43 printf "Session Limits are set for Global and Frontend to %d (decreased)\n\n”

$ConnLimit
44 ConnLimit=0
45| fi
46
471 if | "$MaxConnRate" —ge "$MaxConnRateDefault" | && [ "$((MaxConnRate —
VarConnRate))" —1t "$MinConnRateDiff" | ; then

48| ConnRateLimit="$ ((MaxConnRate + Digit))"

49| SetRateConn=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit
connections global $ConnRateLimit")

50 SetRateSess=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit sessions
global $ConnRateLimit")

51 printf "Connections and Sessions Rate Limits are set for Global to %d (increased
)\n|\n" $ConnRateLimit

52| Scale=$(expr $ConnRateLimit / $ServScaleRatio)

53| echo "Scale :"S$Scale

54 docker service scale my—web=$Scale

55 ConnRateLimit=0

56| fi

57

58| if [ "$MaxConnRate" —ge "$MaxConnRateDefault" | && [ "$((MaxConnRate —
VarConnRate))" —gt "$MaxConnRateDiff" | ; then

59| ConnRateLimit="$ ((MaxConnRate — Digit))"

60| SetRateConn=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit
connections global $ConnRateLimit")

61 SetRateSess=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit sessions
global $ConnRateLimit")

62 printf "Connections and Sessions Rate Limits are set for Global to %d (decreased
)\n|\n" $ConnRateLimit

63| Scale=$(expr $ConnRateLimit / $ServScaleRatio)

64 echo "Scale :" $Scale

65 docker service scale my—web=$Scale

66 ConnRateLimit=0

67| fi

68

69 if [ "$MaxCurrConn" —1t "$MaxConnDefault" |; then

70 printf "Maximum Current Connection is Lower\n"

71 printf "Changing to default values......... "

72 SetGlobal=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn global
$MaxConnDefault ")

73| SetFrontend=$(socat /var/run/haproxy/admin.sock — <<< "set maxconn frontend
mysite $MaxConnDefault")

74| SetRateConn=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit
connections global $MaxConnRateDefault")

75 SetRateSess=$(socat /var/run/haproxy/admin.sock — <<< "set rate—limit sessions
global $MaxConnRateDefault")

76 SetDockerService=$(docker service scale my-web=$MinDockerServ)

52




ProJecT: 2 STUDENT: S316611

s sleep 2s
78| fi

93



	Contents
	List of Figures
	Introduction
	Problem Statement
	Project Objectives
	Report Outline

	Background
	Dynamic Scaling Cloud
	Benefits of dynamic auto scaling clouds

	Docker
	Benefits of using Docker
	Docker-Machine
	Docker-Swarm

	HAProxy
	Grafana
	InfluxDB
	cAdvisor
	ApacheBench

	Technical Design
	Design Principle
	Design Model
	Design Architecture

	Design Principle
	Algorithm
	Flow Diagram

	Discussion
	Test Scenario
	Test Results
	Possible Future Work

	Conclusion
	References
	Appendices:
	
	
	
	

