
Autonomous Virtual Machines for
Ensuring QoS of Distributed Web

Services Using Evolutionary Game
Theory

A proof of concept of
self-organising virtual machines

A.S.M. Samiul Saki Chowdhury

Thesis submitted for the degree of
Master in Network and System Administration

30 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2018

Autonomous Virtual Machines for
Ensuring QoS of Distributed Web
Services Using Evolutionary Game

Theory

A proof of concept of
self-organising virtual machines

A.S.M. Samiul Saki Chowdhury

c© 2018 A.S.M. Samiul Saki Chowdhury

Autonomous Virtual Machines for Ensuring QoS of Distributed Web Services Using
Evolutionary Game Theory

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The virtualisation of hardware resources is one of the universal features of modern-day
cloud computing. The agility and effectiveness of hardware resource pool virtualisation,
geographic diversity and universal connectivity of various inter-connected components play
a vital role in cloud computing. The research of this field is now magnified towards the
study and development of secure and stable migration of the shared virtual systems. Effi-
cient usage of physical components by sharing over a public space is now one of the main
focus of the traditional and upcoming cloud providers and the enterprise networks.

It is already in practice to clone virtual machines (VMs) in order to create a more scal-
able and flexible infrastructure over the internet. Popular technique such as migration of
VMs while maintaining the optimal quality of service (QoS) of the distributed web services
across the globe has also become an on-demand feature of cloud infrastructure. Adminis-
tration of these virtual systems with various types of services are now needed to be more
flexible towards adapting to the clients’ requests. The broad demand for these services
in large-scale requires some sort of autonomy in the system as it is becoming more com-
plicated to maintain them manually. The other feasible options, that are mostly adopted
by data centres, are to implement a centralised system which controls all the VMs in the
cloud. This solution is adequate until the backbone of the central system breaks down or
cannot recover from a node depletion. The concept of a self-aware VM is to perform tasks
independently, self-regulate its behaviour to maintain stability by analysing the network
condition and other external/internal attributes in order to introduce an equivalence in the
cloud architecture. This phenomenon of virtualisation demands an effective algorithm that
can conduct and administer the emergence behaviour of the virtualised systems. This de-
signed algorithm need to approach an autonomy with self-governance and self-maintenance
feature in the network to maintain system-wide stability.

In this project, we propose different variants of migration algorithms by adopting the evol-
utionary game theory, to achieve the emergence behaviour of the VMs in a network by
equalising the average response times of the entire connected network. Our algorithms are
applied to the VMs in the network, to make them be more independent and autonomous.
Using these algorithms each individual VM can observe and learn the network condition at
a particular moment, implement the algorithm, analyse and select the affected data-centres
as the migrating destination, whilst maintaining the quality of service of the distributed
web services. These algorithms are designed to stabilise the average response time in all
the adjoined data-centres in a network by distributing the idle migrating VMs among each
other without any requirement of a centralised management.

Furthermore, we perform multiple experiments by implementing these algorithms in sim-
ulations and in real-life cloud infrastructure test-bed and accumulate results of our design
performance of modified self-managed and self-coordinated VMs. We analyse and discuss
the performance of the algorithms in VM instances deployed in the cloud platform. The
results show, using our migration algorithms, we can equalise the response time in the en-
tire network with the self-organised VMs, by applying an autonomy in the system, while
providing a satisfactory QoS of distributed web service

I

Preface

Entrance enthusiasm and revelation have always emerged as a fundamental part in the ac-
complishment of any task. This thesis is the result of the NSA5930 Master’s thesis project,
which is corresponding to 30 ECTS points, at the masters programme Network and System
Administration (NSA), Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo (UiO) in Oslo, Norway. The work has started from January 5,
2018 and ended on May 22, 2018.

I would like to thank my thesis supervisor, Associate Professor Anis Yazidi, Oslo Metro-
politan University (OsloMet), for his encouragement, ideas, guidance and support from the
initial to the final level throughout the entire project. With his supervision I have learned
a great deal about design principal behind cloud computing the technical implementations
of scientific concepts.

I am also thankful to Associate Professor Hårek Haugerud for all his help and guidance on
setting up the cloud infrastructure in order to implement and achieve the project goal. I
would like to thank University of Oslo and to Oslo Metropolitan University for offering me
this masters programme. I am grateful to my wife Kari-Anette Nilsen for her inspiration
during this master thesis period and her devoted support.

A.S.M. Samiul Saki Chowdhury

Oslo
May 20, 2018

III

Contents

Contents V

List of Figures IX

List of Tables XI

List of Acronyms XIII

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Statement . 5
1.3 Report Outline . 5

II The Project 7

2 Enabling Technologies and Related Work 9
2.1 Hypervisor . 9

2.1.1 Types of hypervisors . 10
2.1.2 Benefits of hypervisors . 11

2.2 Virtual Machines and Virtual Infrastructure 11
2.2.1 Kernel-Based Virtual Machine (KVM) 12
2.2.2 Quick Emulator(QEMU) . 13
2.2.3 Xen . 13

2.3 Ubuntu . 13
2.4 Cloud Computing . 15

2.4.1 Benefits of cloud computing . 15
2.5 Overview of the Tools . 15

2.5.1 Google Cloud Platform (GCP) . 15
2.5.2 Python . 17
2.5.3 Bash . 17
2.5.4 HAProxy . 18
2.5.5 Consul . 18
2.5.6 ApacheBench (AB) . 19

2.6 Related Work . 20
2.6.1 Researches based on evolutionary game theory 20
2.6.2 Researches based on the migration of VMs 22
2.6.3 Researches based on autonomous self-organising VMs 26
2.6.4 Researches based on surveys . 27

3 Methodology and Approaches 29
3.1 Overview of the Methodology . 29

3.1.1 Evolutionary game theory . 30
3.1.2 Erlang Unit . 32

V

3.1.3 Migration of Virtual Machines . 33
3.1.4 Self-management . 34

3.2 Approaches . 34
3.2.1 General algorithm . 34
3.2.2 Uniform-site migration (naive) . 36
3.2.3 Uniform-site migration (informed) 37
3.2.4 Biased migration . 38
3.2.5 Single-point migration . 39
3.2.6 Uniform-site migration (informed) using peer-to-peer communication 41
3.2.7 Uniform-site migration (informed) using graph partitioning 42

3.3 Architecture Overview . 45
3.3.1 Infrastructure requirements . 45

3.4 Regional Setup . 46
3.4.1 Cross-region HTTP load-balancer setup 47
3.4.2 Google cloud DNS setup . 48
3.4.3 Service account setup . 49
3.4.4 Consul-Master instance setup . 49
3.4.5 Load-balancer instance setup . 51
3.4.6 Worker instance setup . 52
3.4.7 NAT-Gateway instance setup . 54
3.4.8 Migration procedure . 55
3.4.9 Initial setup script . 57

III Conclusion 59

4 Results and Analysis 61
4.1 Results: Test-Simulation . 61

4.1.1 Results: Simulation of uniform-site migration (naive) 62
4.1.2 Results: Simulation of uniform-site migration (informed) 64
4.1.3 Results: Simulation of biased migration 66
4.1.4 Results: Simulation of single-point migration 68
4.1.5 Results: Simulation of uniform-site migration (informed) using peer-

to-peer communication . 70
4.1.6 Results: Simulation of uniform-site migration (informed) using graph

partitioning . 72
4.2 Results: Test-Bed . 74

4.2.1 Result: Test-bed with no migration 77
4.2.2 Result: Test-bed of uniform-site migration (naive) 77
4.2.3 Result: Test-bed of uniform-site migration (informed) 78
4.2.4 Result: Test-bed of biased migration 79
4.2.5 Result: Test-bed of single-point migration (informed) 81
4.2.6 Result: Test-bed of migration schemes with dynamic HTTP requests 82

5 Discussion 87
5.1 Discussion: Uniform-Site Migration (Naive) 87
5.2 Discussion: Uniform-Site Migration (Informed) 88
5.3 Discussion: Biased Migration . 88
5.4 Discussion: Single-Point Migration . 89

6 Conclusions and Future Work 91
6.1 Conclusion . 91
6.2 Contribution . 92
6.3 Future Work . 92

Bibliography 93

Appendices: 99

VI

A Test-Simulation Scripts 99
A.1 naive-uniform-site-migration.py . 99
A.2 informed-uniform-site-migration.py . 102
A.3 biased-migration.py . 105
A.4 single-point-migration.py . 108
A.5 peer-to-peer-connection.py . 110
A.6 uniform-graph-partition.py . 114

B Test-Bed Assisting Scripts 119
B.1 create-instance-group.sh . 119
B.2 dns.sh . 121

C Test-Bed Startup Scripts 123
C.1 consul-master.sh . 123
C.2 lb.sh . 124
C.3 nat-gateway.sh . 126
C.4 worker.sh . 127

D Test-Bed Migration Scripts 129
D.1 csv-gen.sh . 129
D.2 migrate-uniform-naive.sh . 129
D.3 migrate-uniform-informed.sh . 131
D.4 migrate-biased.sh . 133
D.5 migrate-single-point.sh . 135

E Test-Bed Initial Script 137
E.1 automate.sh . 137

F Performance Evaluation Scripts 140
F.1 data-collector.sh . 140
F.2 ewma.py . 141

VII

List of Figures

2.1 Illustration of the Difference Between Type-I and Type-II Hypervisors . . . 10

2.2 Illustration of Virtualisation Map . 12

2.3 Illustration of Virtualisation Stack . 14

3.1 Illustration of Traditional Model for Virtual Machine Migration 33

3.2 Flow-Diagram of Uniform-Site Migration (Naive) 37

3.3 Flow-Diagram of Uniform-Site Migration (Informed) 38

3.4 Flow-Diagram of Biased Migration . 39

3.5 Flow-Diagram of Single-Point Migration . 40

3.6 Zones Separated in Multiple Clusters . 41

3.7 Flow-Diagram of Peer-to-Peer Communication 43

3.8 Zones Partitioned by Groups . 44

3.9 Model of the System Infrastructure . 45

3.10 Illustration of Regional Data-Centre Setup 46

4.1 Simulation of Uniform-Site Migration (Naive) 63

4.2 Simulation of Uniform-Site Migration (Informed) 65

4.3 Simulation of Biased Migration . 67

4.4 Simulation of Single Point Migration . 69

4.5 Simulation of Uniform Site Migration using Peer-to-Peer Communication . 71

4.6 Simulation of Uniform Site Migration using Graph Partition 73

4.7 Test-Bed Sample of Raw Data and EWMA Graph of A Data-Centre 76

4.8 Test-Bed EWMA Graph for No Migration 77

4.9 Test-Bed EWMA Graph for Uniform-Site Migration (Naive) 78

4.10 Test-Bed EWMA Graph for Uniform-Site Migration (Informed) 79

4.11 Test-Bed EWMA Graph for Biased Migration 80

4.12 Test-Bed EWMA Graph for Single-Point Migration 81

4.13 Test-Bed EWMA Graph for Uniform-Site Migration (Naive) with Dynamic
Request Sets . 82

IX

4.14 Test-Bed EWMA Graph for Uniform-Site Migration (Informed) with Dy-
namic Request Sets . 83

4.15 Test-Bed EWMA Graph for Biased Migration with Dynamic Request Sets . 84

4.16 Test-Bed EWMA Graph for Single-Point Migration with Dynamic Request
Sets . 84

X

List of Tables

4.1 Request Rate ID Sets in Periodic interval for Test Simulation 61

4.2 Instances Specifications for Test-Bed Scenario 74

4.3 Initial Parameters for Test-Bed Scenario . 74

4.4 Dynamic HTTP Request Sets in Clients for Test-Bed Scenarios 82

5.1 Algorithms Performance Chart in Test-Bed Scenarios 89

XI

List of Acronyms

• DNS Domain Name System

• EGT Evolutionary game theory

• EWMA Exponential Weighted Moving Average

• GCP Google Cloud Platform

• I/O Input/Output

• IT Information Technology

• KVM Kernel-Based Virtual Machine

• OS Operating System

• QoS Quality of Service

• RMS Resource Management System

• SLA Service Level Agreement

• VM Virtual Machine

XIII

Part I

Introduction

Introduction NSA5930 : Master’s Thesis in Spring 2018

Chapter 1

Introduction

The modern-day information technology (IT) is developed and moderated continuously
over era to this point of present-day. Computer components and their inter-communication
algorithms are being improved to adapt to the latest technological demand. In the course of
time, the mathematical operations in electronic hardware, were formalised and became more
understandable and familiarise well enough to be stated formally and proven with complex
algorithms followed by scaling the system to a giant network of computers and smart devices.
The evolution in IT industry is mainly evaluated by the emergence and development of
communication technology. The suitable and affordable cost of smart devices around the
globe creates the requirement of extensively active and highly effective connectivity between
those devices. Resources in a system are not bound to be kept in one single machine but
should be distributed and shared among various clients/users. Data are constantly in
need to be shared over the different form of components. This high demand for big data
computation requires a higher quality of network speed as well as space to keep a large
amount of data or information. A client, not only can access the resources over the internet
but also can use the remote machine as it is handled locally. Present day communication
technology is in need of a productive way to share these resources which requires a efficient
management of system components.

1.1 Motivation

With the early age mainframe computing, multiple users were capable of accessing a central
computer through simplified terminals, whose only function was to provide access to those
mainframes. It was impractical for an organisation to buy and maintain one mainframe
computers for every employee, mostly due to the reason the costs to buy those computers.
Nor did the typical user need the large (at the time) storage capacity and processing power,
that a mainframe provided. Providing shared access to a single resource was the solution
that made economic sense for this sophisticated piece of technology. The idea of virtual
machines (VMs) first appear in the late 1960s and continue to arise on active development
when the resource pool sharing start becoming more expensive due to the vast need of
user-demand. The limitation of hardware components brought out the motivation behind
running multiple operating systems on a single machine. The concept was first introduced
by allowing time-sharing among several single-tasking operating systems. The implement-
ation of time sharing by different users was first introduced by IBM [1]. But unlike virtual
memory, a system VM entitle users to write privileged instructions in the code which gave
the advantage to add input/output (I/O) devices that are not allowed by the standard
systems. As technology improved, newer systems became capable of managing memory
sharing among multiple VMs on the same computer operating system (OS) or on different
OS over the internet. Slowly It became possible to execute one or more operating systems
simultaneously in an isolated environment by using virtualisation software like VMware.
Multiple VMs running their own guest OS are frequently engaged for server consolidation.

3

Introduction NSA5930 : Master’s Thesis in Spring 2018

The server is the concept when a pool of hardware resources are organised and maintained in
order to let a group or remote clients connect with them and share the same pool to spawn
individual VMs [2]. This makes the most uses of the resources as it is considered to be the
most innovative way to cut down product costs. Virtualisation came to drive the technology
and was an important catalyst in the communication and information revolution.

The concept of cloud computing indicates the VMs that are connected globally over the
internet in different servers despite the location. Cloud capability often refers to the hard-
ware resource capabilities of the servers. The cloud is the delivery of on-demand computing
resources, everything from applications to data centres. Cloud providers are the organisa-
tions which typically use a payment model to let the client borrow their components. It
allows companies to avoid or minimise up-front IT infrastructure costs. The manufactur-
ing and maintenance cost of a product is one of the main purposes of sharing resources
between different clients. The main idea of sharing is the efficient use of all the resources
between various systems. If a user needs to work on a project where a highly efficient sys-
tem or higher quality hardware are required, it is not necessary for that user to buy a new
product for that particular purpose only, rather the user can easily lend/borrow a resource
from another client over the internet with some condition applied. Cloud computing in IT
paradigm enables ubiquitous access to shared pools of configurable system resources and
higher level services that can rapidly be provisioned with minimal management effort, often
over the internet. This type of computing depends on the sharing of resources to achieve
economy of scale and coherence.

The services offered by vendors and other developers are versatile and increasing globally as
businesses. As the network of the big shared system grows, the number of components relies
on running those services are growing as well. In a large-scale network, complex algorithms
and process-hungry services are constantly requiring the support of larger amount hardware
components. The resource pool to run the deployed services is now shared between end-
users. The idea of sharing components, for the specific purpose is becoming more popular
which needs an efficient resource management system. This opens up the opportunities
of the vast field of development on VM management by implementing resilient algorithms
on the computing systems. Not only it is required to spawn VMs on the server but also
administration, performance, scaling and migration of those VMs are becoming present-
day research interest. The goal is to optimise the performance of a VM to response and
perform according to multiple users request to the different part of the world. Moreover, the
term VM migration is the task of moving VMs with services, from one physical hardware
environment to another, preferably without losing its state. As the application of deploying
virtual services grows, interest on the development of sharing VMs over the internet became
more popular. The development of sharing client’s to data/services among each other more
efficiently accelerated the research on better management of VMs in a infrastructure for
the appropriate use of resources and improvement on reducing service depletion due to
poor error handling and management of the VMs. At this point, when every system is
trending to complex systems and utilisation of big data becoming a colossal problem, it
is a concern of legitimate VM administration in cloud computing. The majority of the
services deployed in the cloud and it is not possible to control the administration manually
anymore. An autonomic system is essential for this sort of management to avoid human
probed error as the minimum. This means suitable algorithms must be implemented to
control and manage VMs to maintain the quality of services (QoS), migrate the services,
optimise the performance and preferably in a distributed manner rather than centralised
fashion.

In this project, we advocate a system design which can inspire future researchers to achieve
an improved working solution for autonomous VM migration to provide QoS of distributed
web services over diverse hardware platforms.

4

Introduction NSA5930 : Master’s Thesis in Spring 2018

1.2 Problem Statement

For migration of virtualised systems, administrators move logical hardware pieces, between
physical servers or other hardware pieces that do not have a physical shell or composition.
Modern-day services often provide migration functionality to make it easier to move VMs
without doing a lot of other administrative work [3]. To ensure QoS on those offered dis-
tributed services faces various objectives that must be taken into account whilst deploying.
Keeping the downtime minimum or saving the state of machines when migrating, tends
to be a tedious and resource greedy process. An algorithm based on such as evolutionary
game theory, needed to be designed which can successfully be integrated into each VM.
The algorithm can be adapted from nature as an example such as animal behaviour in col-
lective. This will make VMs more autonomous and function in a distributed manner, i.e.,
no centralised governing is needed. The algorithm should define what will be VMs main
principle for moving into a different physical location. Its also need to be recognised that
this particular algorithm should concentrate on how to make VMs be more efficient when it
comes to keeping the state of the services. Furthermore, the performance of system design
must be evaluated by putting it to the tests in various test-bed scenarios and measure,
analyse and compare the experimental results extracted from the systems to assess system
design.

The problem arises when the lack of managing algorithm to automate VM management fails
to process the clients request incoming to services. In this masters thesis, we are addressing
these problems for VM automation:

"How to design a suitable algorithm which can automate the mi-
gration demeanour of VMs in order to adopt evolutionary game the-
ory and equalise the average response time of different regions? How
to achieve autonomous characteristics in the VMs while maintain-
ing the QoS of the distributed web services without the assistance of
centralised systems?"

1.3 Report Outline

Rest of our thesis report is organised as follows:

• In Chapter 2.6, the enabling technologies that are implemented in this project have
been discussed. An overview of the tools that are used in the system design are
also provided and some of the interesting related work that had been done on VM
migration, self-awareness of VMs and algorithm based on evolutionary game theory
are reviewed.

• In Chapter 3, the methodology of adapting and evaluating the implemented al-
gorithms using evolutionary game theory with different variants are thoroughly ex-
plained.

• In Chapter 4, results of the test simulations are analysed with numerical results and
graphs. Implementation of proposed algorithm in real-life test-bed scenarios have
been conducted and numerical data has been gathered and analysed in this chapter.

• In Chapter 5, we discuss the performance and constraints of the proposed evolutionary
algorithm.

• Finally, in Chapter 6, the conclusions and future work are presented.

5

Part II

The Project

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

Chapter 2

Enabling Technologies and
Related Work

A designer of cloud infrastructure has multiple choices of protocol and standards, ranging
from the simple to the amazingly complex design. In hardware virtualisation, physical
hardware pieces are carved up into a cluster of VMs, logical hardware pieces that do not
have a physical shell or composition, which are essentially just programmed pieces of an
overall hardware system. In a virtualisation setup, typically, a central hypervisor, allocates
resources like CPU and memory to VMs. For instance, in older networks, most of the in-
dividual elements were physical workstations, such as desktop PCs, which were connected
by Ethernet cables or other physical connections. By contrast, VMs do not have a phys-
ical interface. They do not have a box or shell or anything to be mobile. But they can
be connected to the same keyboards, monitors and peripherals that humans have always
used to interact with personal computers. As discussed in Chapter. 1, the technology for
maintaining cloud computing has emerged from a long history of development on VM shar-
ing. These stock VMs are quite field ready to be deployed in a cloud for an autonomous
network. It is required to be a simple yet competent configuration of the VMs to sense and
react to the network it is connected to or the services it is running. Furthermore, these
The legacy systems usually have a controller that maintains the connectivity and method
to respond to different network situations. These controllers can be referred to be as the
brains of the system where the VMs that provide the services can be referred to be as the
worker systems. Having an autonomous system provides the VMs to avoid the administrat-
ive boundaries, by taking control of making their own routing and functional execution on
its own. The design of such self-aware systems necessitates optimised cloud network setup
along with other attributes. The enabling technology of such configuration requires various
cloud computing tools to be operated in a consensus manner. The following sections briefly
describe some of the most substantial tools have been acclimated in this project.

2.1 Hypervisor

Cloud computing entails clients to be able to access a VM and also use those machines
anywhere. A hypervisor manages these VMs. It is a program that enables servers/users
to host several different VMs on a single hardware. On each of this machine or operating
system (OS), an individual program can be executed, as it will appear that the system has
the host’s hardware such as processor, memory and other resources. In reality, however, it
is the hypervisor that allocates these hardware resources to the VMs. An efficient hyper-
visor will let its users have several VMs, all of them working optimally on a single piece
of computer hardware without interacting each other. Currently, this software is largely
adapted to Linux and Unix systems. The use of virtualisation technology expands hardware
capabilities, extend the extensive utilisation of components, control costs and improve reli-

9

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

ability and security of systems especially where resources are limited in a platform such as
cloud servers. A hypervisor that accesses all physical devices residing on a server, can also
access its memory and disks. It can control all aspects and parts of a VM. Nevertheless,
the hypervisor is what controls and allocates what portion of hardware resources each OS
should get as they needed, without disrupting each other. The present-day hypervisors
are the fundamental components of any virtualisation system. It can be referred to be the
OS of a virtualised system [4]. CPU vendors now adding hardware virtualisation to their
x86-based products, extending the availability (and benefits) of virtualisation to PC- and
server-based audiences.

2.1.1 Types of hypervisors

A VM can create requests to the hypervisor through a variety of methods, including API
calls. There are two types of hypervisors:

Type-I or Bare metal hypervisors

These type of hypervisors can run directly on the host’s hardware to control them and
to manage guest OSs. They are also called bare metal or native hypervisors. The first
hypervisors, which IBM developed in the 1960s, were native hypervisors. Among other
type-I hypervisors, VMware ESX and ESXi offers most advanced features and scalability
but require licensing [5]. Lower cost of VMware can make hypervisor technology more
affordable for small infrastructures. It is the leading type-I at present. Microsoft Hyper-V
does not offer many of the advanced features but with the help of XenServer and vSpere,
it is one of the best type-I hypervisors at present. Another example of a type-I category
is Citrix XenServer and Oracle-VM which has open-source core hypervisor but lacks most
advanced features like ESXi.

Figure 2.1: Illustration of the Difference Between Type-I and Type-II Hypervisors

Type-II or Embedded hypervisors

These hypervisors can run on a conventional OS just as other computer programs do. A
guest OS runs as a process on the host. Type-II hypervisors abstract guest OSs from the
host OS. They are also referred as embedded or hosted hypervisors. VMware Workstation,

10

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

VMware Player, Virtual Box, Parallels Desktop for Mac and QEMU are examples of type-
II hypervisors. VMware workstation has major use cases for running multiple different
operating versions or systems on a single desktop. For the developers, this needs sandbox
environment and snapshots and only can be used for labs and demonstration purposes.
VMware servers, on the other hand, is free to use and a hosted virtualisation hypervisor.
Microsoft Virtual PC is the latest version of hypervisor technology and has only limited
options (e.g., can only run Windows 7). Oracle VMs should also be mentioned as a type-II
hypervisor with reasonable performance and features of virtualised systems.

Finally, there is the Red Hat Enterprise virtualisation is the kernel-based VM (KVM) which
qualifies both to be a bare-metal and embedded hypervisor. It has the ability to turn the
Linux kernel itself into a hypervisor so the VMs can have direct access to the physical
hardware itself.

2.1.2 Benefits of hypervisors

There are countless advantages of using hypervisor in a system. Some are mentioned below:

• VMs can easily run on the same physical hardware but they are usually separated
logically from each other. This means that even though one VM experiences malware
attack, error or crash at some point, it will not affect VMs on the same machine.

• VMs are mobile and independent of the underlying hardware. This means they can
be migrated between local and remote virtualised servers in a lot easier way than
traditional applications that are running on the physical hardware.

• Hypervisors can also be used in data services for easy cloning and replication.

• Hypervisor-based replication is also more cost-effective and less complex than current
replication methods, especially those involving VMs. Hypervisor-replication can save
up on storage space. System-based replication method requires replication of entire
volume of the VM which can take a considerable amount of storage space with several
VMs.

• Hypervisor-based replication is also hardware neutral, i.e., any duplicate data can be
stored in any storage.

Considering the consolidating of the virtualised system, VMware, Microsoft and Citrix
Systems are the three of the biggest vendors of the hypervisor in the enterprise data centre
space.

2.2 Virtual Machines and Virtual Infrastructure

As discussed earlier, VMs are computer software that is like a physical computer, run an
OS and applications. The end user has the same experience on a VM as they would have on
dedicated hardware. The VMs are comprised of a set of specification and configuration and
is backed by the physical resources of a host system. It usually has virtual devices which
provide the same functionality as physical hardware and have an additional benefit in terms
of portability, security and manageability. Specialised software like the hypervisor, emulates
the PC client or server’s CPU, memory, hard disk, network and other hardware resources
completely, enabling VMs to share those resources. The hypervisor can emulate multiple
virtual hardware platforms that are isolated from each other, allowing VMs to run Linux
and Windows Server OSs on the same underlying physical host. It can have several types of
files and even a storage to store those files. The configuration files, NVRAM setting file and
the log files are the key files to make a virtualised machine. It limits the costs since it reduces
the quantities of hardware maintenance costs and also reduces power and cooling demand.
Administrators can take advantage of virtual environments to simplify backups, disaster

11

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

recovery, new deployments and basic system administration tasks. Virtualised systems do
not require specialised, hypervisor-specific hardware. Virtualisation does, however, require
more bandwidth, storage and processing capacity than a traditional server or desktop if the
physical hardware is going to host multiple running VMs.

The infrastructure that supports VMs consists of at least two software layers. They are
the virtualisation and their management. In vSphere, ESXi provides the virtualisation
capabilities that aggregate and present the host hardware to VMs as a normalised set of
resources. VMs can run on an isolated ESXi host or on ESXi hosts that vCenter Server
manages. vCenter server lets the user create resource pools and manage multiple hosts
by effectively monitoring the physical and virtual infrastructures. In the vCenter Server
hierarchy, a data centre is the primary container of ESXi hosts, folders, clusters, resource
pools, vSphere vApps, virtual machines, and so on. Data-stores are virtual representations
of underlying physical storage resources in the data centre. A data-store is the storage
location (for example, a physical disk or LUN on a RAID, or a SAN) for VM files. Data-
stores hide the idiosyncrasies of the underlying physical storage and present a uniform
model for the storage resources required by VMs. Fig. 2.2, shows the virtualisation map.

Figure 2.2: Illustration of Virtualisation Map

2.2.1 Kernel-Based Virtual Machine (KVM)

KVM is a virtualisation infrastructure for the Linux kernel that supports native virtu-
alisation on processors with hardware virtualisation extensions. A wide variety of guest
OSs works with KVM, including many flavors and versions of Linux, BSD, Solaris, Win-
dows, Haiku, ReactOS, Plan 9, AROS Research OS and OS X. In addition, Android 2.2,
GNU/Hurd (Debian K16), Minix 3.1.2a, Solaris 10 U3 and Darwin 8.0.1, together with
other OSs and some newer versions of these listed, are known to work with certain limita-
tions. KVM originally supported x86 processors and has been ported to S/390, PowerPC,
and IA-64. An ARM port was merged during the 3.9 kernel merge window.

12

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

KVM does not perform any emulation by itself, instead, it exposes the /dev/kvm interface,
which the set up the guest VM’s address space can be used by a userspace host. The host
must also supply a firmware image, usually a custom BIOS when emulating PCs, that the
guest can use to bootstrap into its main OS. It can also feed the guest simulated I/O and
map the guest’s video display back onto the system host. On Linux, QEMU versions 0.10.1
and later is one such userspace host. QEMU uses KVM when available to virtualise guests
at near-native speeds but otherwise falls back to software-only emulation.

2.2.2 Quick Emulator(QEMU)

QEMU is the software that actually creates the hardware which a guest operating system
runs on top of. Depending on the QEMU configuration the virtual hardware is created which
shows the device like a keyboard, mouse, network card, etc., to the guest OS. These devices
are based on the actual specifications that are released for physical hardware available.
QEMU mimics the real hardware and creates some devices written specifically for virtu-
alisation use-cases. QEMU VMs usually use virtio framework for creating these devices.
Virtio-net networking, virtio-blk block, virtio-scsi SCSI and similar devices created with
QEMU. Para-virtualised devices have the benefit of being designed with virtualisation in
mind, which makes them faster and easier to manage than the emulation of real devices.
It uses several services from the host Linux kernel, like using KVM APIs for guest con-
trol using the host’s networking and storage facilities. QEMU can also interact with other
projects such as SeaBIOS that provides BIOS services to the guests.

2.2.3 Xen

Xen is a VM monitor tool for the x86 architecture. It is an open source software released un-
der the GNU General Public License (GPL) and developed at the University of Cambridge.
This software is a para-virtualisation technology which provides a bit modified hardware
interface to the VMs. It works by separating hosts (DomainO) and guests (DomUs) OS
into different parts called domain, that can run on top of a special hypervisor hardware
interface. DomainO (privileged) usually handles the system commands (e.g., create, shut-
down, reboot, etc) for the DomUs (unprivileged). One of the best features of the Xen is the
live migration which allows continuous service operation by moving VMs to other physical
hardware. It also provides load balancing of VMs, to a high-performance server from a
highly congested server. Xen live migration reduces some of the complexity in the config-
uration since entire OS and all the applications are migrated as one unit. Live migration
has two main requirements: shared storage and similar CPU architecture.

Users interact with virtual machines via one of the several available interfaces, like virt-
manager, oVirt, OpenStack, or Boxes. These software interacts with libvirt (provides a
hypervisor-neutral API to manage VMs). This also has APIs to interface with different
blocks/storage and network configurations. In QEMU or KVM, VMs libvirt communicate
with QEMU using APIS provided by it. A QEMU instance is present on each VM created
on a host. The guest runs as a part of the QEMU process. Virtual CPU (vCPU) in each
guest is then seen as a separate thread in the host’s processes. QEMU usually interfaces
with Linux, especially with the KVM module within Linux. This makes the VMs run
directly on the physical hardware (not emulated by QEMU). Fig. 2.3, shows thread (one
at a time) running QEMU code at any time on the hardware emulator and generation of
I/O requests on IOThread to the hosts on guest’s behalf and handles events.

2.3 Ubuntu

Ubuntu is a Linux distribution based on the Debian architecture. It is usually run on per-
sonal computers and is also popular on network servers. Most popular architectures such as

13

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

Figure 2.3: Illustration of Virtualisation Stack

Intel, AMD, and ARM-based machines usually run Ubuntu. This is the most popular oper-
ating system running in hosted environments, so-called "clouds", as it is the most popular
server Linux distribution. It is published and developed by Canonical Ltd and based on free
software. Ubuntu has a server edition that uses the same APT repositories as the Ubuntu
Desktop Edition. The differences between them are the absence of an X Window environ-
ment in a default installation of the server edition and some alterations to the installation
process. The latest server edition supports hardware virtualisation and can be run in a VM,
either inside a host operating system or in a hypervisor as we discussed in Sec. 2.1. The
AppArmor security module for the Linux kernel is as default on key software packages and
the firewall is extended to common services used by the OSs The current Ubuntu release
supports Intel x86 (IBM-compatible PC), AMD64 (x86-64), ARMv7, ARMv8 (ARM64),
IBM POWER8, IBM zSeries (zEC12/zEC13), and PowerPC architectures. In this project,
one of the most stable latest version of Ubuntu (Ubuntu 16.04.4 LTS (Xenial Xerus)) has
been used for instance image platform.

14

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

2.4 Cloud Computing

Cloud computing is now adapted to all shapes and sizes of companies and industries. It is
undoubtedly beneficial for users to use cloud platforms for as infrastructure (IaaS), platform
(PaaS) or services (SaaS). Cloud computing is an information technology (IT) paradigm
that enables ubiquitous access to shared pools of configurable system resources and higher-
level services that can be rapidly provisioned with minimal management effort, often over
the Internet. Cloud computing relies on sharing of resources to achieve coherence and eco-
nomy of scale, similar to a utility. Third-party clouds enable organisations to focus on their
core businesses instead of expending resources on computer infrastructure and maintenance.
Advocates note that cloud computing allows companies to avoid or minimise up-front IT
infrastructure costs. This type of computing allows enterprises to focus to get their ap-
plications up and running faster, with improved manageability and less maintenance. This
enables IT teams to be more rapidly adjust resources to meet unpredictable and fluctuating
business demand. If used properly and to the extent necessary, working with data in the
cloud can vastly benefit all types of businesses. Mentioned below are some of the advantages
of this technology [6]:

2.4.1 Benefits of cloud computing

• Cost efficiency is the best feature of adapting to cloud computing which benefits
all type businesses. Instead of using traditional hardware and software to run a
infrastructure for a business, it is considered to be a fraction of a cost while running
it in the cloud. IT expenses are significantly low while cloud computing is adapted to
the businesses.

• Storing information in the cloud gives almost unlimited storage capacity. Running
out of space is no more a concern.

• Since all the data is stored in the cloud, backing and restoring is relatively much easier
than storing the data in a physical device. As a fail-safe most cloud providers are
equipped with a recovery handling facilities.

• Software integration is usually that can be done in the cloud automatically. This
takes away additional effort to customise and integrate deployed applications in the
systems.

• Services and software application can be picked that is best suitable for business or
personal use.

• Most importantly, the ease of accessibility the VMs in the cloud from geographically
anywhere make it an unbeatable technology of the generation.

• Cloud computing gives the advantage of quick deployment, i.e., the system can be
deployed and be fully functional in few minutes depending on what technology is used.

2.5 Overview of the Tools

Based on features enabled by virtualisation system, cloud service components and inspira-
tion behind the idea of the autonomy of services, we researched and utilised the following
tools in our methodology and design approach. Some of the main features of the tools,
which helps to choose for this project, are as follows:

2.5.1 Google Cloud Platform (GCP)

Google Cloud Platform is a set of physical components (computers and hard disk drives)
and virtual resources (VMs), that are contained in the Google’s data centres around the

15

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

globe. The location of each data centre location is in a global region. This region includes
Western Europe, Central US and East of Asia. Each region has a collection of zones, which
are isolated from each other and identified by a unique identifier (e.g. us-central1-f). The
benefit of this kind of distribution is such as including redundancy in case of failure and
reduced latency by locating resources closer to clients. The distribution describes how the
resources are used together.

GCP HTTP(s) load-balance

GCP HTTP(s) load-balancing provides global load-balancing for HTTP(s) requests destined
for the instances in GCP. URL rules can be configured to route some URLs to one set of
instances and route other URLs to other instances. Requests are always routed to the
instance groups that is closest to the user, provided that group has enough capacity and is
ready to handle the requests. If the closest groups capacity exceeds the limit, the request is
then sent to the closest group that does have the capacity. This type of load balancing sup-
ports both IPv4 and IPv6 addresses for client traffic. HTTP requests can be load-balanced
based on port 80 or 8080 and for HTTPs it can be port 443. The load-balancer acts as an
HTTP/2 or HTTP/1.1 translation layer, which means that the web servers always see and
respond to HTTP/1.1 requests [7]. In cross-region load-balancing, a global IP address can
be used to intelligently route users requests based on proximity. This means the back-end
servers located geographically closest to the users will be getting requests first automatically
until the servers’ capacity runs out. If the closest instances do no have enough capacity,
cross-region load-balancing forward users request t the next closest region.

Google cloud DNS

Google Cloud DNS is one of products of Google Cloud Platform (it’s placed under Network
products) that allows us to manage Domain Name System (DNS) records for any domain.
DNS stands for Domain Name System. DNS is a hierarchical decentralized naming system
for computers, services, or a resource connected to the Internet or a private network. In
more simpler words, when a URL of some website is typed in the browser, the computer
knows to which IP address of the server it needs to connect in order to obtain data for the
website. A good analogy will be "Phonebook", but instead of a name of the person, we
need to have web domain or webpage. And instead of phone numbers, it needs to have the
IP address of the servers. So every time the URL is called, DNS server looks IP address
of the server which is connected to the domain of that webpage. There are different DNS
records with which domain can be managed. Each record has its purpose, some type of
DNS records are:

• A - IPv4 address, maps IP of the host with a domain.

• CNAME - alias for one name to another, for example, www.example.com points to
example.com.

• MX - manages where emails should be delivered.

• TXT - whatever text, for example, Google uses it to verify that the ownership of the
domain.

There are much more important thing to emphasize is that, to lower the load of DNS servers,
DNS records are cached for certain time (which can be set with TTL parameter), so when
some changes are done, it can take some time to reflect. Although we can manage DNS
records within any domain registrar account, there are some advantages of using Google
cloud DNS:

• It is cheap to use and easy to maintain.

16

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

• It is on the same network as our Google compute engine, so requests have smaller
latency.

• It is fast, scalable, reliable and secure as it runs on its infrastructure which is managed
by Google.

• Possibilities to manage DNS records through Gcloud SDK, REST API, cloud console
etc.

• Cloud DNS uses Google’s own global network of Any-cast name servers to serve DNS
zones from redundant locations around the world, providing high availability to any
users. Anycast addressing is a one-to-one-of-many association where datagrams are
routed to any single member of a group of potential receivers that are all identified by
the same destination address. The routing algorithm selects the single receiver from
the group based on which is the nearest according to some distance measure. Anycast
is not specifically supported by IPv4, but this omission can be worked around in many
cases by using Border Gateway Protocol (BGP). Multiple hosts (usually in different
geographic areas) are given the same unicast IP address and different routes to the
address are announced through BGP.

• A complex project as this masters thesis can have multiple domains, sub-domains. In
this case, Google cloud DNS is useful.

2.5.2 Python

As the programming tool, the Python programming language is used as our software plat-
form to design our protocol. It is a widely used general-purpose, interpreted, high-level,
dynamic programming language. Its design philosophy gives priority to code reliability. The
syntax of Python allows programmers to express the concept in fewer lines of code than
the languages such as Java or C++. This language helps to get a neat and clear program
in both large and small scales. It supports multiple programming paradigms which include
object-oriented, functional procedural styles. This language can be packaged as standalone
executable program most operating systems. This allows this programming language to be
running on any operating environments without any help from Python interpreters. Python
is a free and open-source software, run by a non-profit software foundation, which features
a dynamic type system and automatic memory management and has come with late and
comprehensive standard library. In our project, we use Python v3.5.4 to build our design
and code implementations [8].

2.5.3 Bash

Bash is a Unix shell and command language written by Brian Fox for the GNU project as
a free software replacement for the Bourne shell. It is first released in 1989 and has been
distributed widely as the default login shell for most Linux distros and Apple’s macOS.
The tool is a free software and complies to UNIX standards. Bash is a command processor
that typically runs in a text window, where the user types command that cause actions.
The language can read and execute commands from a file called a shell script. Like Unix
shells, it supports filename globbing (wildcard matching), piping, command substitution,
variables and control structures for condition testing and iteration. Bash is a POSIX com-
pliant shell, but with a number of extensions. The syntax is a superset of the Bourne shell
command syntax. It can execute the vast majority of Bourne shell scripts without modific-
ation and with the exception of Bourne shell scripts stumbling into fringe syntax behaviour
interpreted differently in Bash or attempting to run a system command matching a newer
Bash built-in, etc. Bash 3.0 supports in-process regular expression matching using a syntax
reminiscent of Perl. Some of the best features of Bash are the ability to run startup scripts,
conditional execution, shell arithmetic, aliases, directory stack, arrays, process management
and controlling the prompt.

17

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

2.5.4 HAProxy

HAProxy is single-threaded, event-driven, non-blocking engine combining a very fast I/O
later with a priority-based scheduler. The architecture is designed to move data as quickly
as possible with the least possible operation keeping in the forwarding of data in mind. Data
does not reach the higher level in OS model while performing offering a bypass mechanism
at each level. HAProxy let the kernel do that most processing work and avoid certain
operation when it guesses they could be grouped later. Typically 15% of the processing
time spent in HAProxy versus 85% in the kernel TCP or HTTP close mode. Also, the
HTTP keep-alive mode is about 30% for HAProxy versus 70% for the kernel [6]. A single
process in HAProxy can run as much as 300000 distinct proxies which require only one
process for all the instances. It is also possible to run it on multiple processes. Usually, this
tool scale very well for HTTP keep-alive mode but the performance that can be achieved out
of single process generally outperforms common needs by an order of magnitude. HAProxy
only requires the haproxy executables and a configuration file to run which makes it easy to
use for the service providers. a syslog daemon needs to accurately be configured for logging
services and rotation services for logs. The configuration files are parsed before stating and
HAProxy tries to bind all the listening sockets. If anything fails then it refuses to start.
The run-times failure is next to none once HAProxy accepts to start.

HAProxy is an open source software used for TCP/HTTP load balancing. It runs on Linux,
FreeBSD, and Solaris. It is famous and widely used for its ability to keeps servers up by
distributing the load across multiple servers. Among many terminologies used in HAProxy
Access Control List (ACL) contains a set of rules which has to be checked so that it can
carry out some predefined actions which can be blocking some requests or selecting the
server to forward the request based on the conditions. ACL rules apply to all the incoming
traffic which increase the flexibility of the traffic forwarding based on different factors such
as some connection to the back end and pattern matching. A back-end is the group of
servers that have been established for load-balancers. It contains the IP addresses of the
servers along with the port numbers)(if necessary) and chooses the load-balancing algorithm
for efficient processing of the web-server access requests. Another attribute of HAProxy is
front end where the configuration defines how the requests have to be forwarded to the
back-end servers with ACL. The definition of front end contains IP addresses and port
numbers of the servers as well. HAProxy also has a health check-up feature which in a
simple way checks the back-end servers’ health. It is carried out by simply sending a TCP
request and find whether server listens to the specific ports and IP. Upon no response,
the load-balancer can fire up a forwarding request to another server which is healthy. The
unhealthy back-end server does not get any further request until it checks up as a healthy
server again. At Least, one server should be healthy to process the request.

Among many load-balancing algorithms in HAProxy, the commonly used algorithm is
round-robin algorithm. The algorithm chooses the server sequentially in the list. Once
it reaches the end of the server list, the algorithm forwards the next request to the first
server in the list again. The weighted round-robin algorithm uses the weight allocation to
the server to forward the request while dynamic round-robin algorithm uses the real-time
updated weight list of the server. The least connection algorithm is also being used in
HAProxy which selects the server with few active transactions and then forwards the user
requests to the back end. The source algorithm also selects the server based on source
IP addresses using the hash to connect to the machinating server. Server overloading can
be reduced using high availability algorithm which gets activated when the primary (act-
ive) load-balancer gets overloaded. It fires up the secondary (passive) load-balancer if the
primary load-balancer fails. In this project, a primary load-balancer is used with round-
robin algorithm in order to forward all the incoming request to the back-end server [9].

2.5.5 Consul

Consul is a software designed by HashiCorp is a distributed, highly available system. It is a
complex system that has many different moving parts. This tool has multiple components

18

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

for service discovery and configuration in the infrastructure. The key features of this tool
are service discovery, health checking, key/value storing for any number of purposes and
supporting multiple data centres out of the box. The architecture of Consul consists of
following terms:

• Agent: An agent is the long-running daemon on every member of the Consul cluster
and started by running consul agent. The agent is able to run in either client or server
mode. All nodes must be running an agent and usually refer to the node as being
either a client or server as well other instances of the agent. All agents can run the
DNS or HTTP interfaces, and are responsible for running checks and keeping services
in sync.

• Client: A client is an agent that forwards all remote procedure calls (RPCs) to a
server. The client is relatively stateless and takes part in LAN gossip pool as the part
of only background activity. This has a minimal resource overhead and consumes only
a small amount of network bandwidth.

• Server: A server is an agent with an expanded set of responsibilities including par-
ticipating in the Raft quorum, maintaining cluster state, responding to RPC queries,
exchanging WAN gossip with other data centres, and forwarding queries to leaders or
remote data centres.

• Data centre: While the definition of a data centres seems obvious, there are subtle
details that must be considered. A data centres are considered to be a networking
environment that is private, low latency, and have high bandwidth. Each data centre
recommends running at least one Consul server.

• Consensus: Consensus is to meant as an agreement upon the elected leader as well
as agreement on the ordering of transactions. Since these transactions are applied to
a finite-state machine and implies the consistency of a replicated state machine.

• Gossip: Consul is built on top of Serf which provides a full gossip protocol that is
used for multiple purposes. Serf provides membership, failure detection, and event
broadcast and involves random node-to-node communication, primarily over UDP.

Every node that provides services to Consul runs a Consul agent and does not require for
discovering other services of getting/setting keys or value data. The agent is responsible
for health checking of the service on the node as well as the node itself. The agents can
talk to the node or more Consul service where the data is stored and replicated. The
servers themselves can elect a leader. Components of an infrastructure need to discover
other services or nodes and can query any Consul servers or any of the Consul agents.
The agents can forward queries to the servers automatically. When a cross data centre
service discover or configuration is made the local Consul servers can forward the request
to the remote data centre and return the result. Applications can make use of Consul’s
hierarchical key/value store for any number of purposes, including dynamic configuration,
feature flagging, coordination, leader election, and more using simple HTTP APIs. This
tool is designed to support both DevOps community and application developers which
makes it perfect for modern, elastic infrastructure.

Along with other important tools mentioned above, following is used for benchmarking and
testing purposes.

2.5.6 ApacheBench (AB)

Load testing is a good idea before any production deployment. It’s nice to quickly establish
a best-case scenario for a project before running more detailed tests down the road. The
ApacheBench tool (ab) can load test servers by sending an arbitrary number of concurrent
requests. This especially shows how many requests per second the Apache installation
is capable of serving. This is a tool for benchmarking any Apache HTTP server. It is

19

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

designed to give an impression of how the current Apache installation performs. AB is a
single-threaded command line computer program comes bundled with the standard Apache
source distribution, and like the Apache web server itself is free, open source software
and distributed under the terms of the Apache License. ApacheBench will only use one
operating system thread regardless of the concurrency level (specified by the -c parameter).
In some cases, especially when benchmarking high-capacity servers, a single instance of
ApacheBench can itself be a bottleneck. When using ApacheBench on hardware with
multiple processor cores, additional instances of ApacheBench may be used in parallel to
fully saturate the target URL.

2.6 Related Work

Many interesting research work have been done on VM migration, self-awareness and auto-
mation of a VM in cloud infrastructure. Many approaches have been adapted to be utilised
in the field of research and some are already in use in operation in most well-known service
and cloud providers. Other approaches are slowly coming out of the surface of under-
development layer to the product ready level. In this project, we are mainly focusing on
the algorithms and their approaches in practical and theoretical work. Finding the right
algorithm in order to make our VMs more autonomous and management-free approach in
the runtime compilation of the services is one of our fundamental concept in the system
design. It is not easy to find one specific concept that is suitable for the VM’s optimal
performance as completely independent and minimising network complexity at the same
time optimising faster and achieve emergence behaviour of the deployed VMs are tended to
be a difficult and demanding process. Most research approaches are generally focused on
the centralised approaches of the VM management where a single system are in charge of
other smaller VMs which providing services by observing the network behaviour and send-
ing/receiving information in order to manage those VMs. This is a cluster concept where
controller VMs can become the bottleneck of the infrastructure. This means these systems
are vulnerable to become depleted or disconnected from the network which can make the
whole cluster become incapable of responding to network demands. Some researches are
done where it is targeting the cluster of VMs to be scalable as the need for the services
increases. This requires the unnecessary use of components when many VMs can be created
just to respond to the incoming request in a single cluster especially in the cloud platform
when the VMs are separated in different zones or locations. The following are the brief
description of various categories of related work that we find most interesting in our early
research work.

2.6.1 Researches based on evolutionary game theory

This masters thesis is inspired by various algorithms those are mainly based on natural
phenomenon. Most of the legacy algorithms, implemented in the cloud computing are
motivated by observing the nature and its properties, especially the evolution of nature
and animal behaviour as a collective system. Some of the interesting topics are discussed
in the following section.

The researcher of paper [10] has brought our attention to the evolution algorithm for imple-
menting a behavioural feature on the VMs to pick the most popular video clip for the mobile
video users. The author of this paper pointed out that multiple video users could share
the same video clips based on content reused. Video users are watching those video clips
that most popular and have the best quality. They advocate that the video applications
are provided by many well-known video provider (such as YouTube) serve with contents
that have distinctive characteristics. Based on content reuse the quality of the video differs
from each other by the number of the user request to access those videos. More popular the
video is better the quality it serves. High definition videos tend to get more view due to
their popular demand. The problem regarding video’s services is addressed in fewer work
than the research on energy-spectrum-aware scheduling scheme for video streaming. The

20

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

researchers contribute with an evolutionary algorithm which based on the content reuse of
the video by observing mobile video user (MVUs) behaviour and popularity of the video as
the utility of every MVU. The replicator dynamics in the evolutionary game is utilised to
model the interaction of MVUs. According to there algorithm, MVUs are given a number
of choices of video clips. Like an evolution game, all the players are grouped together into
a popularity. Each player would independently choose a certain strategy, especially the
strategy providing the highest quality of video. An evolutionary equilibrium is in place
where there is no change in the proportion of players choosing different strategies. The
algorithm runs as simply by each MVU to get access to a video clip in random where the
utility of MVUs accessing video clips is calculated. Then it is checked if the utility of each
MVU is is less than the average utility of all the video clips. If true then the MVUs can
choose another random utility until it finds the one has the better than average utility.
These steps continue until all the best quality video clips are found by MVUs. The authors
also proposed a Q-learning based evolution algorithm which helps to avoid exchanging too
much information and facilitates each MVUs with the ability to work without the knowing
the strategy of other MVUs. The paper concluded by dealing with the video clip selection
process by considering relevant influential factors. In this project, we can use the sim-
ilar concept of the evolutionary game algorithm on our servers with autonomous VMs to
implement self-organising or self-managing behaviour.

Another theoretical research work [11] we review where the authors discuss the issue regard-
ing the deployment of degradation of performance of the big data applications in the cloud
servers. They mentioned that using a traditional fixed-resource allocation mechanism has a
couple of drawbacks such as low resource utility and unresponsiveness to the performance
degradation. The resource here was mainly referred to the combination of CPU, memory,
I/O and network resources. To address those drawbacks the researchers proposed a hybrid
environment for cloud and big data where resource allocation is used fairly to ensure fairness
between cloud and big data application. They also proposed the approach to migrate VM
in order to make each VM in cloud application to reach a certain level of efficiency. They
start by allocating resources dynamically to the cloud or big data applications and used
the game theory to model this resource allocation problem to ensure fairness. The cloud
and applications were assumed to be stable compared to big data applications as no new
cloud tasks will come and finish while big data processing tasks under a certain period of
time. The application in the cloud is set to provide services to the users (e.g., web servers,
FTP servers, etc.) and big data applications are set to run computing tasks and run for
more hours. Thus, adapting to dynamic resource allocation was necessary to avoid conflict
and negotiation between these types of applications. The VM migration is set to maximise
the utility of each VM while the minimal utility is guaranteed. The project adapted Nash
bargaining game to model the VM migration problem. How the theory works is by finding
the best strategy combination for all the other players (VM) under equilibrium situation
which leads to the maximum utility achievement for each VM. In this case, each VM’s best
strategy will rely on the other VM’s strategy. This solution with Nash equilibrium works
very well to maximise fairness in resource allocation for the applications. The migration
mechanism for VM was designed to try making them meet their own demand within the
limited resources. Using the above approach the authors of this paper demonstrate that
the resources utility and average performance of the cloud and big data applications were
much higher in their designed hybrid environment than the traditional environment. The
resources could be rearranged to satisfy the applications that lack resources.

In the paper [12], the researchers call reader’s attention to the issue regarding the network-
driven approach of a load-balancing heterogeneous network. The adaptation of next-
generation wireless networks will integrate the wireless access technology to provide seam-
less mobility to mobile users with high.speed wireless connectivity. Network selection of
load-balancing will also become crucial as it will try to avoid network congestion and per-
formance degradation. As the different service areas have limited amount of bandwidth
available to share among a group of wireless users the evolution game theory is considered
to be a more fitting solution to this setup. Load-balancing in a heterogeneous network can
be achieved by using either a user-driven or network-driven approach. For the user-driven
load-balancing approach, network-selection algorithms are implemented at user mobile that

21

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

may be preferred due to its low implementation complexity and low communication over-
head. In the latter approach, a centralised controller assigns network resources to the
connections in a service area which on demand to keep all the available wireless networks
tightly integrated. This can result in a large communication overhead. The authors used a
dynamic evolutionary game with multiple populations to analyse the behaviour of the users
in the network selection. The game was formulated to logically model the competition
among groups of users in the different service areas with various types of wireless techno-
logies such as WMAN, cellular network, etc. The evolutionary equilibrium was targeted as
their solution for competition. There was two algorithm presented in this paper to obtain
a solution, population algorithm (uses information about the users in the corresponding
service area) and the reinforcement learning algorithm (only utilises local knowledge ob-
tained through learning to reach the evolutionary equilibrium). Finally, the solution to the
network-selection problem obtained from the evolutionary game model is compared to the
Nash equilibrium solution obtained from a classical non-cooperative game model. A cent-
ralised and a distributed algorithm were proposed to implement the proposed evolutionary
game model for network selection. In their experiments, they found out that their proposed
network-selection based population evolution algorithm takes much less convergence time
than the reinforcement learning algorithm in which a user selects a network independently
by using its local payoff information obtained through exploration. The developers have
investigated the dynamics of network selection in heterogeneous wireless networks using the
theory of evolutionary games and came to a conclusion that their evolutionary equilibrium
model had been considered to be the stable solution for which all users receive an identical
net utility from accessing different networks.

This particular paper [13], as the previously mentioned related work, also focused on de-
veloping a resource allocation algorithm based on the evolutionary game theory on Mobile
Cloud Computing (MCC). The research considered mobile terminals’ energy consumption
and time delay as well as monetary cost in mobile edge computing environment in the
wireless network. As the researchers specified that MCC is a significant paradigm that
combines wireless network service and cloud computing to enable mobile terminals to enjoy
the abundant wireless resource computational power ubiquitously but partially suffers from
limited battery power and scarce computing capabilities. It can also introduce high latency
because of the distance between terminals and powerful servers are geographically far. Mo-
bile edge computing is vastly adapted to solve this issue but this does not solve the limited
radio and back-haul communication capabilities. In this paper [13], the scientists put for-
ward a joint cloud and wireless allocation algorithm, where the mobile terminals which have
the tasks offloading requirements in different service area form a population. Cost function
in the game model intends to measure the consumption of tasks offloading and is involved
in the energy consumption, monetary cost and time delay. The model formulation of their
game algorithm is modelled by taking advantages of a dynamic evolutionary game. The for-
mulation of the game consists of players (mobile terminal chooses macro and small service
providers), population (set of terminals in the same service area), strategy (selection of each
service provider). population share (number of mobile terminals selecting service providers
for population), population state (population shares of all service providers) and finally the
cost function (to measure the affected cost of a player i.e., energy consumption, time delay
and monetary cost). Using their replicator dynamics and equilibrium and stability analysis
of evolutionary game algorithm this research provided simulation results that verified that
the effectiveness of their algorithm can save more energy and have less time delay when the
input data size becomes larger, compared to existing algorithms.

2.6.2 Researches based on the migration of VMs

Migrating operating system instances across distinct physical hosts is a useful tool for ad-
ministrators of data centres and clusters: It allows a clean separation between hardware
and software; and facilitates fault management, load balancing, and low-level system main-
tenance.

In this paper [14], the scientists came up with an exquisite solution to migrate the VMs to a

22

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

different server while the OSs continues to run. This means the live migration and was done
by migrating the entire OS and all of its applications as one unit. This allows avoiding many
of the difficulties that arise by the process-level migration process. The interface between
a virtualised OS and VM monitor (VMM) makes it easy to avoid the problem of residual
dependencies in which the original hosts always available and accessible by the network
in order to service certain system calls or memory access for the migrated process. The
authors describe that VM migration can decommission the original host once the migration
is completed. Additionally, migrating the level of an entire VM means that in.memory state
can be transferred in a consistent and efficient way that applies to the kernel-internal and
application-level state. The live migration allows a separation of concerns between user s
and operator of a data centre or clusters. It allows the separation of hardware and software
considerations and consolidating clustered hardware into a single coherent management
domain.

This interesting research work yields a technique to implement high-performance migration
support for Xen and their design and implementation addresses the issue and trade-offs
involved in live migration. One of the issues was that minimising the downtime of active
OSs hosting live services and other was mentioned to be the total migration time during
which state on both source and destination machines is synchronised and might affect the
reliability. The entire project was ensuring the migration itself does not disrupt the act-
ive services through the resource contention with migrating OS in an unnecessary manner.
Their memory transfer technique push phase (source VM push the pages to destination
across network while continues to run. Modified pages were pushed again), stop-and-copy
phase (source VM stops, pages gets copied to destination, new VM starts) and pull phase
(new VM executes and pull the accesses the pages that had not been copied). There were
also pure stop-and-copy, pure demand-migration and pre-copy migration procedure were
proposed. Using their self-migrating technique they make the VM to destination machines,
by running a migration stub on the destination machine to listen for incoming migration
requests, by creating an appropriate empty VM followed by receiving the migrated sys-
tem state. By integrating live OS migration into the Xen virtual machine monitor they
enable rapid movement of interactive workloads within clusters and data centres. Their
implementations performed very well with minimal service downtime, about 60ms.

Live migration of VMs can have a major impact on cloud system performance and can
consume a critical amount network bandwidth and other resources. The following research
work [15] were focused on the autonomous network aware VM migration strategy in the
cloud data centre. In this paper, the authors mentioned the issue with live migration which
requires a considerable amount of cloud network resources. The goal of live migration is to
balance the network resource with network traffic while satisfying the VMs and host resource
constraints in the data centres. To ensure the QoS guarantees for both the customers and
cloud providers, VMs must be relocated to another host that has sufficient resources and
currently underutilised. Maintaining the migration from a host when the network traffic
demand is in high level can be a challenging and complex strategy. Lack of free available
resource can result in a long period of time for multiple migrations to be completed. This can
take a toll on the performance degradation of VMs and affect the service level agreement of
the host due to over or under utilisation of the host machines. The researchers claimed that
a few research had been done in the area of time sensitivity regarding the migration of the
VMs. Time is an important factor to consider when migrating VMs. Considering migrating
VMs at varying network traffic demands could potentially increase or decrease the total time
to move a VM from the source host to destination host. To handle these issue authors of
this paper [15] proposed a migration strategy that observes the current demand level of a
network and performs necessary decision based on it. The artificial intelligence technique
called Reinforcement Learning act was used as decision support system which enables an
agent or VM to learn network traffic demand and migrate accordingly if necessary. Their
novel autonomous learning agent with the capabilities of deciding a suitable time to schedule
a group of VMs for migration from an under-utilised host by analysing the current state of
network bandwidth. The optimal action of the migrating agents was performed to utilise
the resources that are available during live migration. The researchers introduced a resource
utilisation pattern to the agents which run periodically for a week, day, hour and minute.

23

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

The autonomous agent will learn from this pattern and migrate the VMs by delaying the
network resource consumption and ensuring the improvement of live migration. Their
approach shows that it is possible to delay migration for the most opportunistic time for
full utilisation of network resources.

Scalable cloud computing can be a suitable solution for most of the web service deployment
in a cluster. But it is not always effective where the requirement of VM supporting those
services becomes large, i.e., the number of VMs need to be increased in a large manner
which can conclude in a significant amount in maintenance cost. Although the approach
of this project is to maintain QoS of dynamically distribute web services by sharing the
autonomous VMs by migrating to affected zones, some principle of using the metrics in
cloud computers to achieve autonomy of the VMs can be interesting such as the meth-
ods adopted in this paper [16]. The researchers pointed out that computing infrastructure
that is stable and provides reliable services is a key to the successful operation of complex
contemporary enterprises. Especially when the information is demanded in real time and
often on-the-go and the situation can get worse if the amount and usage information that
are demanded are not predictable any more. The enterprise networks are costly and time
consuming to prepare for such situations. The underlying technologies and issues for cloud
computing, includes resource virtualisation, scalable resource management, load balancing
of resources across time and location, and quality of service. The issues Cloud computing
infrastructure entails are not entirely new but the long-standing fundamental problems of
high-performance computing. Efficient assignment and scheduling of resources are yet to be
developed to dynamically match the workload demands in the absence of the human inter-
vention. Infrastructure administrators manually schedule the VM migration to sustain the
fluctuating demands which result in a complex operation. VM migrations are an import-
ant underlying technology of IaaS for building efficient cloud computing infrastructure on a
cluster of servers. It is designed to move VMs from an overloaded physical machine or zones
to a lightly loaded machine lessen the burden on them while utilising the idling physical
machines. The researchers of this paper [16] claim that migration decisions may not fit vari-
ous different situations. In fact, some decisions may cause more unstable and unnecessary
migrations. To solve this issue they introduce a learning framework that finds thresholds
for machine overloading and underutilised dynamically. In their approach, if a particular
computing pattern caused imbalance, that will trigger VM migration. This pattern will be
saved or learned with its corresponding migration details for future use. The paper also
proposed a proactive learning methodology that not only accumulates the past history of
computing patterns and resulting migration decisions but more importantly searches all
predefined possibilities for the most suitable decisions. The proposed autonomous learning
system to learn environment overview to monitor and collect CPU usage statics by the
kernel-level modules, normalising and identifying the CPU and memory load patterns by
collecting the CPU status and memory information as raw data to find the unusual pat-
terns with a standard deviation that indicates how far a particular CPU or memory usage is
from the mean. By implementing SBUML into their dynamic migration framework module
which provides a bridge between the host machine and the guest VMs to select a VM for
migration when a host machine is overloaded, they have achieved their project goal. Their
experiments demonstrate that their self-organised autonomous VM migration increases the
resource utilisation of the servers on which the IaaS is running on. Especially, their pro-
posed method resulted in an impact on learning new patterns of both CPU utilisation up
to 20% from 5% while memory utilisation had gone up by 5-10%.

A good design to detect over-load and under-load of the host machine and placement
algorithm for VM is one of the main focus of VM optimisation research. The research work
done by scientists in the paper [17] have proposed a Markov prediction model to forecast
the future load state of the host. Their work was motivated from observing the presence of
the dynamic environment that leads to a changing load on the VMs. The authors explained
that the fast growth of cloud computing it is crucial to effectively manage resource sharing
and time access flexibility for applications and other components. Application models are
required to assess the suitable amount of resources for each workload. Live VM migration
migrates the entire OS and its associated applications from one host to another where a
user does not notice any interruption in their service. Since in the modern day resource

24

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

management and allocation during VM migration has become more challenging due to high
dynamics of hosted services, high demands of services and resource elasticity, there is a
need to reorganize the VMs and the hosts to provide load balancing or server consolidation
depending on the Service Level Agreement (SLA) with the end users and other issues. To
address three most important research problem in live migration, host over-load/under-load
detection, VM selection and their placement, the researchers of this paper [17] proposed an
algorithm which consider both current and future host utilisation states for VM placement,
instead of only considering trade-offs between power consumption and SLA violation at
the current host only. By combining the first-order Markov chain model was used to build
Markov host prediction model along with a host load detection algorithm called Median
Absolute Deviation Markov Chain Host Detection (MadMCHD) algorithm to find the future
over-utilised/under-utilised host’s state to determine suitable hosts in advance while live
migrating VMs, the paper proposed an efficient algorithm to solve the issue. They evaluate
the host detection model and implement their algorithm on a simulated large-scale data
centre and compare the impact of data workload with the other well-known state-of-the-
art host detection algorithms in the literature (namely iqr, mad, lrr, lr, and thr). The
experimental results show that their proposed algorithms had a significant reduction in
terms of SLA violation, the number of VM migrations and other metrics as compared to
the most commonly used algorithms.

Similarly, the paper [18] presents a method to handle the highly variable user load from
different geographical locations based on time-of-day, high or low growth rate, etc. The users
requesting for different locations need the equal performance on QoS, so the researchers
suggested Global Live Migration (GLM) of VMs using a software-defined network (SDN)
enabled network infrastructure, because of its extensive control over network traffic routing.
SDN controlled inter-site links can help move a VM from one data centre to another despite
its geo-location. The researchers experimented on solving the problem of high chance in
network congestion in inter-site links when several VM migration conducts in random order.
The authors clarified that the VM migration can fail if a random migration sequence is
followed without first assessing the capacity of each inter-site link using the bandwidth
required for a successful migration of a VM. They maximise the number of successful
live migration by choosing a near optimal migration sequence that helps the cloud service
provider to maintain the response time for all the applications. In order to achieve that,
they formulate a Mixed Integer Programming problem using Lagrangian Relaxation to find
a near-optimal sequence of VM migrations that addresses the issue of network congestion
and Self-Tuning Regulator, that leverage network traffic patterns as a feedback to enhance
the optimisation model continuously. A feedback-based control system was implemented
that leverage the network traffic data from the SDN controller to enhance the accuracy
of our near-optimal solution in each iteration. The solution is evaluated by simulating it
using the CloudSimSDN [19] simulator with a real-time scenario if cloud-based data centres
hosting multiple applications. Their aim seek to avoid response time SLA violation for all
of the hosted application which they achieved by successfully maximise the number of VM
live migration and placing them closer to the user’s geographical location, which proved to
be a better solution in performance (minimum improvement of 38.09%) than other best fit
heuristic algorithms.

Lastly, in this category of research work, authors of this paper [20], offer an extensive VM
migration scheduler called mVM, to provide schedules with minimal completion times to
schedule the migrations wisely when numerous VMs must be migrated. In order to minim-
ise the impact on both the infrastructure and QoS, the mVM scheduler relies on realistic
migration and network model to compute the best moment to start each VM migration
and the amount of bandwidth allocated. mVM also decides which migrations are executed
in parallel to provide fast migrations and short completion times. The scheduler was im-
plemented as a set of extensions for the customisable VM manager BtrPlace. The mVM
scheduler was performed against an unmodified version of BtrPlace maximises the migra-
tion parallelism and a scheduler that reproduces Memory Buddies decision by statically
capping the parallelism. The migration model accuracy was also evaluated against rep-
resentative cloud simulators models such as CloudSim and simplified the actual migration
behaviour. The research’s main results were concentrated on the prediction accuracy of

25

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

mVM, migration speed of the scheduler, energy efficiency, scalability and extensibility of
the proposed scheduling system through independent high-level constraints. The mVM
was implemented as a plug-in of BtrPlace and its current library allows administrators to
address temporal and energy concerns. Although their goal was to mainly compare the en-
ergy efficiency against state-of-the-art scheduler which it saves about 21.5% Joules against
BtrPlace, mVM also reduces the individual migration duration by 20.4% on average and
the scheduler completion time was reduced by 28.1% which is interesting for this masters
thesis project research work as we are trying to accomplish an optimal VM migration design
principle while maintaining integrity and QoS in overall cloud infrastructure.

2.6.3 Researches based on autonomous self-organising VMs

In the following paper [21], the writers address the problem with the resource sharing of an
application by virtualisation of the systems arises when the resources such as CPU, memory,
etc., lacks a management strategy. This management needs to be done autonomously, i.e.,
without any help of external instructions and by only observing the network and other
agents that are connected. In a multi-core physical node, many VMs can run at the same
time and share them by scheduling them. In many cases, these sharing schema does not
help the VMs that need to the allocation of the resource more than normal amount of
usage or less depending on how the VMs are being utilised. This demands a solution
where resources needed by each VM adjusts according to the application demand. The
author offered a solution to this case. They applied a policy that allows fulfilling the agreed
application-level QoS and a mechanism, based on priority weight, to spread the unused
resources between the contending VMs. And finally, a learning mechanism was proposed to
dynamically reach and meet service level objectives (SLOs) expressed in transactions per
second.

The priority weight approach allows to use the Xen’s scheduler console configuration tool
and change the proportion of the assigned resources. Using this weight a certain distribution
of the resources (in this paper [21] CPU) for contending VMs are accomplished. The
authors pointed it out that if a VM goes offline then the weighting mechanism assigns
more resources to the active VMs which made it difficult to keep track of the appropriate
weights that map an expected performance. With the controller approach, the management
component includes the sensor algorithm and the controller algorithm. The algorithms run
in parallel and communicate to each other by a queue. The algorithms are scheduled to be
called at different time periods. The learning phase of the controller computes the service
demands for the active VMs. Two possible states in learning phase indicate the request the
initialisation of a learning phase and indication that a learning round was n course. After
each round, a new QoS was computed and put it in XenStore database. The results show
that their approach had met SLOs.

Another important paper [22] proposed a flexible distributed architecture for dynamic and
autonomous management of a data centre equipped with autonomous VMs. The authors
mentioned, the current VM migration can be achieved in several seconds or hours (numerous
and independent) and can adjust resources in data centre dynamically and automatically.
The resource management is usually carried out in a centralised manner by defining a
utility function taking into account the levels of the resource utilisation. The proposed
approach in this paper is based on a decentralised and independent VMs which in terms
are not correlated to each other. They proposed a model formulation to efficiently solve
the problem of dynamic allocation of interdependent VMs in virtual networks. They find
the mapping between what is required as SLA and what is the availability of the resources
in a data centre. These SLAs can be defined by several parameters such as response time,
bandwidth, etc. The availability level of resources is the availability of CPU, memory, etc.
In the first phase the model is used in a data centre and make the better second phase,
as the levels of user requests in a data centre vary with time, it is important to predict
these levels in advance for each VMs. The second phase aims to define a good network
configuration of a data centre and calculates and applies VM migrations to set up a new
configuration (must be flexible to be continuously updated with new SLAs criteria) which

26

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

meets SLAs. The research results indicated that it is feasible to find a distributed and a
decentralised VM allocation which promises flexibility and modularity for a good dynamic
management of large-sized data centres. With virtual distributed resources, interdependent
VMs can continuously exchange their data conveniently.

The researchers in the paper [23] proposed a distributed learning mechanism that facilitates
self-adaptive VMs resource provisioning. They brought attention to the readers about the
issue regarding the ability to partitioning hardware resource in VM instance to facilitate
elastic computing environment to the users. They mentioned that this extra layer of re-
source virtualisation creates challenges when managing clouds effectively. The complicated
relationship between co-hosted VMs and the arbitrary deployment of multi-tier application
makes it difficult for administrators to plan good VM configurations. In IaaS computing,
raw hardware infrastructure, such as CPU, memory and storage is provided to users as an
on-demand virtual server. This ensures the proper utilisation of cloud resources. Cloud
providers consolidate traditional web applications into a fewer number of physical servers
to adjust the VM capacity. This brings the requirement of effective management of the
resources to reconfigure each individual VMs in response to the change of application de-
mands. The server virtualisation to optimise the performance resource utilisation works at
an extent but VMs still have changes to interfere with each other and the practical issue
such as VM’s time delay to performance stabilisation after memory and CPU reconfigura-
tion is a well-known fact. VM clusters of different users may overlap on physical servers.
The overall VM deployment can show a dependent topology with respect to resources on
physical hosts. VMs with mis-configuration can possibly become rogue ones affecting oth-
ers. Furthermore, a mistake in the capacity management of one VM can spread onto the
entire cloud. The authors of this paper tried to solve the issue by treating cloud resource
allocation as a distributed learning task in which each VM being a highly autonomous
agent which submits resource requests according to its own benefit. To handle workload
dynamics, the extend VM configurations to VM running status and address the issues due
to the use of continuous running status as the state space. More specifically, they solve the
issue by treating VM resource allocation as a distributed learning task. Cloud users were
given the ability to manage each VM capacity. Host agents evaluate the requests on one
machine and send this as feedback to all the machines. VMs uses this feedback to learns
its capacity management policy. The authors developed an efficient reinforcement learn-
ing approach for the management of individual VM capacity which is based on Cerebellar
Model Articulation controller-based table. The resource efficiency was optimised by using
a metric to measure a VM’s capacity settings which synthesise application performance
and resource utilisation. Their prototype implementation called iBaloon was able to find
near-optimal configurations for a total number of 128 VMs in a 16 node closely correlated
clusters with no more than 5% of performance overhead in a Xen-based cloud test-bed.
The distributed approach is based on the scalability of infrastructure and highly rely on the
implicit coordination between VMs belonging to the same virtual cluster. In this masters
thesis project, our aim is to concentrate on VM sharing in a distributed manner rather than
scalable approach, between the entire cloud infrastructure located around the globe rather
than a cluster of VM in the same location approach.

2.6.4 Researches based on surveys

Last but not least, the following paper [24] need to be mentioned for its outstanding sur-
vey on various self-organising strategies for resource management in cloud computing. The
paper not necessarily proposed a new idea or algorithm per se, but discussed and analysed
various method of acquiring emergence behaviour of a distributed system. The authors of
this paper discussed the techniques such as bio-inspired computing, multi-agent systems
and evolutionary techniques to manage cloud components resources and how these solu-
tions are applied in the management of these resources by the cloud providers. Among
many papers, this research work draws our interest in adapting theory such as evolutionary
game algorithm on this masters thesis project. The paper [24] mentioned that the system
responsible for managing physical and virtual resources such as Resource Management Sys-

27

Enabling Technologies and Related Work NSA5930 : Master’s Thesis in Spring 2018

tem (RMS) have to aware of the current status of the infrastructure to determine whether
there are enough resources available to satisfy incoming request. RMS monitors resources
and fulfils the user requirements. Although the centralised approach is very common in
RMS there lies a disadvantage of a single point of failure. In distributed RMS, many ele-
ments in the system share information for the decision making process. By doing so, these
elements gain more autonomy and active participation in the overall system running. Dis-
tributed RMS minimises some of centralised approaches weaknesses, such as fault-tolerance
and scalability. Techniques mentioned above are to make the resource more robust and
adaptable. The authors describe that for decision making, a centralised manager can com-
municate with nodes to obtain current status and then determine what necessary steps to be
taken to reach the optimised goal. In this type of system, the intelligence of the system as a
whole is completely depended on the processing power and capabilities if the central node.
It is easy to maintain or update this one node instead of each individual nodes but they are
susceptible to failures, especially in dynamic networking. The best approach, in this case,
would be distributed system, where we have the management function distributed across
all nodes. The authors advocate that in order to achieve a equilibrium across all nodes
or accomplish emergence behaviour an autonomic manager need to perform their activities
based on a control loop called MAPE-K which monitors, analyse, plan, execute and gather
knowledge about the infrastructure. Some of the bio-inspired solutions that are used to
achieve such behaviour have very simple rules based on an idea that after several iterations
the rules applied by organism lead to an emerging global behaviour. Problem-related to
optimisation such as graph problems can be solved by applying ant colony optimisation
(ACO). Multi-Dimensional Bin-Packing (MDBP) along with the ACO can be used to gain
workload consolidation in which bins and the workload represent physical machine and the
items to be packed respectively. A multi-objective ant colony for virtual machine allocation
in Clouds can minimise total resource wastage and power consumption. Honey bees behave
the similar to ants when foraging for foods. An overloaded virtual machine (like a bee
without food) tries to schedule tasks to an under-loaded one (like a foraging bee finding a
new source). A common social behaviour such as gossiping can be used as a conceptual
solution in which nodes can exchange information with a set of other nodes, selected in a
random way lead to a pairwise interconnection between them by means of active thread
that is responsible for initiating the communication and a passive thread that accepts mes-
sages. Bio-inspired solutions are also a Multi-agent system (MAS) since they work based
on agents to solve a given problem. MAS can be used for autonomic management of virtual
networks in infrastructure to achieve self-healing of the networks. Agents in such system
can implement an algorithm to select spare node of the physical infrastructure to associate
with a node to minimise the link utilisation. The investigation provided by the researchers
on self-organising strategies, their thorough insight and analytic approach to various related
work inspired us to dive deep into this particular topic of research.

While researching for autonomous VM migration, it is observed that most work is done by
concentrating on preferring either algorithms on improving distribution method or strategy
and implementation to achieve autonomous VMs. Our project goal is to find a suitable
algorithm to utilise the full aspect of a distribution method while balancing the autonomy
and self-awareness of the VM in a network to acquire an optimal level of equality in resource
sharing and most importantly possibility of VM migration without losing any downtime on
the distributed web services.

28

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Chapter 3

Methodology and Approaches

In traditional cloud computing, VMs are usually created in multiple regions to support the
incoming requests that are coming from different geological locations towards the services
that those VMs are providing. When one zone becomes busy or overloaded by the client’s
request, controller of those regional VMs are usually designed to spawn or scale up some
more similar VMs to support the trade. The VMs in other zones can still be idle and stay
the same as the controllers of those regional VMs have not got any further instructions
to advertise their idleness to the different zones or any direction to help those over-loaded
regions. This scalable framework works considerably until the region with heavy load runs
out of resource pools and can become exhausted when every VMs in different zones gets
topped out. Instead of scaling up to more VMs in affected (overloaded with incoming
requests) zone, sharing of an exact amount of VMs for entire service globally while running
the same service approach can be a better solution. It can reduce the cost of redundant usage
of physical resources and can address the issue of the component limitations. As pointed out
in the previous Chapter, the flexibility and independence of choosing to migrate to different
affected regions by moving the decision making control from controller VMs to worker VMs
itself seem more promising than traditional cloud computing setup. This equalises the
incoming request or response time of the VMs over all the VMs in the same concurrent
network. Our system design accommodates this methodology to solve the issue and adopt
the self-organising VM approach to obtain maximise system resource utilisation.

3.1 Overview of the Methodology

In this section, the methodology to adopt evolutionary game theory for self-organisation,
self-management and migration properties of the VMs along with the Erlang-c model (for
calculating average regional response time) in the algorithm to archive an autonomous
system is discussed. The algorithms that approach such method and implementation of the
system design on the VMs are discussed in the latter sections.

Before we discuss the methodology of our system design, a brief description of the collectiv-
ity of animal behaviour is discussed here. A collective animal behaviour is a form of beha-
viour which involves the coordinated behaviour of the large groups of similar animals. These
groups also show the emergent properties among them. The concept of self-organisation
has been used to understand collective animal behaviours of the animals. The simple and
repeated interactions between individuals can produce complex adaptive patterns at the
level of the group. The behaviour includes the costs and benefits of group’s memberships,
decision-making process, locomotion and synchronisation and transfer of information across
the group. Studying the principles of such collective behaviour has relevance to computer
engineering problems through the philosophy of biomimetics (imitation of the models). In-
spiration coming from patterns in physical systems, such as spiral chemical waves, starling
flocks effects, dance model of bees, etc. arise without complexity at the level of the indi-

29

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

vidual units of which the system is composed as a whole.

Unlike the simple units composing physical systems, however, animals are themselves com-
plex entities [25]. Using the same principle in computer science, especially in cloud comput-
ing the system process can be adapted to the same pattern and emerge as an infrastructure.
It is important to know the internal structure of the group because that structure can be
related to the proposed motivations for animal grouping. Once the location of each animal
at each point in time is known, various parameters describing the animal group can be ex-
tracted. One of the good analogy was given in the article [26] by the biologist David Harper,
where he conducted some experiments on ducks in the ponds to University Botanic Garden
of Cambridge in the winter of 1979-1980. The experiments give us a better understanding
of how equilibria can be achieved by repeated iterations carried by decision-making rules.
With the flock of 33 ducks, Harper places two observers in two fixed points of the lake sur-
face 20 meters apart. The observers throw pieces of bread in regular intervals at different
distribution frequency of bread pieces per minute. After a certain number of iterations and
experiments, it was shown that the after about a minute or two the number of ducks in the
least profitable point (fewer pieces of bread per minute) was stabilised to 11 out of 33. On
the point where more pieces of bread are per minute were thrown had more ducks (rest 22
ducks). The experiments also informed us that, it was observed that at any point if a duck
leave its point will get less amount of bread. At the end of the experiment, the number of
ducks were stabilised to a certain amount at both points and all the ducks in both points
get an almost exact amount of piece of bread. At the beginning of the experiment, most
ducks behaved as optimisers and went to the point where the higher amount of bread per
minutes are being tossed. The site or point selection of the ducks are then considered as
not just an optimisation problem but more like a game. A single ducks choice no only
influence the outcome but also the choice of other ducks. Ducks were together reached to
a equilibrium as a whole group where they did not know the game they were playing. The
final results proved that a emergence can result if every entity in the evolutionary game
plays by the players with the similar entity, i.e., same rule, behave exactly the same and
takes the repeated action in a similar manner individually and independently.

In this project, the behavioural algorithms of collectivity in nature are identified and imple-
mented in the system design. In the cloud platform, the VMs can be recognised as animals
when the incoming requests to each zone can be referred as food/water. As a group of
VM, the equalisation of the average response time of each zone by sharing the amount of
VMs between affected zones can be recognised as the collective animal behaviour pattern.
When the number of incoming request gets higher in a zone with few numbers of VMs, due
to the high demand for web service access, the average response time on that individual
zone can become scarce. The total response time of each zone become overloaded when
the service rate becomes lower than the request rate. This can mostly happen due to the
geographical location of web service requester at a particular time. The higher the number
of the web request the higher the request rate becomes. This requires an increase in the
service rate which can be simply done by spawning more VMs at that effective zones. The
scaling is effective as long the idle systems are not underutilised which is a common issue in
virtualisation systems. However, in the cloud platform scaling can become an issue, when
the service providers demand an amount in cost for each running VM. When the demand
for web services increases it becomes important to ensure full utilisation of all the idle and
running VMs before deploying new ones. Based on the geological location of the VMs,
it is possible that some VMs are underutilised due to a fewer web service request in that
region. To avoid that, an algorithm is proposed in this masters thesis project, by using the
emergence principal of animal group, to optimise the idle VM sharing among all the zones
to equalise the total average response time of the whole framework.

3.1.1 Evolutionary game theory

Evolutionary game theory (EGT) is the application of game theory to evolving populations
in biology. Darwinian competition can be modelled by defining a framework of contests,
strategies, and analytic. It originated in 1973 with J. M. Smith and G. R. Price’s formal-

30

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

isation of contests, analysed as strategies, and the mathematical criteria that can be used
to predict the results of competing strategies [27]. EGT is different from the classical game
theory where the dynamics of strategy changes are more focused and the frequency of the
competing strategies in the population are taken into account. This theory has helped to
explain several basis of altruistic behaviours in Darwinian evolution as well in the economy,
sociology and needless to say in computer science. The author of article [27] realised that
an evolutionary version of game theory does not require players to act rationally but have a
strategy on its own. The tests with EGT strategies shows that the results for the ability to
survive and reproduce. In biology, generally, the strategies which are genetically inherited
that controls an individual’s action. This is analogous to computer programs. The success
of a strategy results by how good the strategy is in the presences of competing strategies
and the frequency with which those strategies are used [28]. Participants of this games aim
to reproduce as many replicas of themselves as they can and the pay-off is in units of fitness.
Rules include replicator dynamics or fit players will spawn more replicas themselves into
the population and how the less fit will be picked out in replicator equation which involves
passing on of genetic traits from parents to their offspring but no mutations. Games as
such run repetitively with no terminating conditions until the strategies succeeded and any
equilibrium has been reached.

Although the evolutionary game theory was originally developed for biology, its applications
in other fields are growing due to the following reasons [12]:

• Solution refinement: In traditional game theory, the Nash equilibrium (each player
is assumed to know the equilibrium strategies of the other players) solution approach
ensures that a player cannot improve its pay-off if none of the other players in the game
deviates from the solution. However, when the solution to a non-cooperative game
has multiple Nash equilibria, a refined solution is required. Evolutionary equilibrium,
which is based on the theory of evolutionary game theory, provides stability, i.e., a
group of players will not change their chosen strategies over time.

• Bounded rationality: Unlike a classical single-play non-cooperative game, in which
all of the players make decisions that lead immediately to the desired solution, an
evolutionary game involves players slowly changing their strategies to achieve the
solution eventually.

• Dynamics in the game model: An evolutionary game can explicitly capture the
dynamics of interaction among the players in a population. In an evolutionary game,
learn from the observations, and make the best decision based on its knowledge. In
addition, with replicator dynamics, the state of the game can be determined at a
particular point in time, which is useful for investigating the trajectory (i.e., trend)
of the strategies of the players while adopting their behaviour to reach the solution.

In this project design, the concept of EGT is adapted to design a strategy for all the
participants in the complex system, i.e., VMs in the cloud. The design is to aim an equi-
librium among the average response time and to achieve QoS of entire distributed web
service provided by those VMs. Using this theory, the VMs aim to equalise the total av-
erage response time in global infrastructure to show an emergence behaviour as the whole
system. The design works as when the number of the response time of one region escalates
over certain level due to the factors of the increased number of incoming request to access
these web services and VM managing those request becomes lower than a certain optimal
number. Then the other VMs from a different region, which handles the same web service
request, takes account of certain scenario and equalises the response time of affected sites
by sharing their own idle VMs considering that helping region have a better response time
than all the regions. In this scenario, every VM can individually decide what should be its
next move (stay in the region or help the affected region). The algorithm design will be
explained thoroughly in the latter sections.

31

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

3.1.2 Erlang Unit

The Erlang is a dimensionless unit especially used in telephone as a measure of offered load
or carried the load on service-providing elements such as telephone circuits or switching
equipment. Full utilisation of circuit capacity constitutes a single Erlang [29]. When used
in carried traffic, a non-integer usually represents the average number of concurrent calls
carried by the service-providing elements. This average is calculated over some reasonable
period of time. One Erlang of carried traffic refers to a single refers to the continuous use
or two channels are being used 50% of the time. When used to describe the offered traffic
represents the average number of concurrent calls that would have been carried if there
were an unlimited number of circuits, considering none of the calls has been rejected. The
relationship between these offered carried traffic depends on the design of system and user
behaviour.

Offered traffic (in Erlang) is related to the call arrival rate, λ, and the average call-holding
time (the average time of a phone call), h, by: E = λh, where λ(the mean arrival rate
of new calls), h (the mean call length or holding time)and E (the traffic in Erlang) using
the same units of time (seconds and calls per second, or minutes and calls per minute).
Three common Erlang models are: callers whose call-attempts are rejected go away and
never come back, callers whose call-attempts are rejected try again within a fairly short
space of time, and the system allows users to wait in the queue until a circuit becomes
available. Erlang-B and Erlang-C formula is the most commonly implemented formulas at
the present.

Erlang-C formula

In this project, among all the Erlang formulas, Erlang-C formula is adopted. The Erlang-C
formula defines the probability that an arriving customer or incoming web access request
will need to queue instead of immediately being served [30]. The formula includes a queue
property in all the systems. The formula assumes an infinite population of sources which
offer traffic of an Erlang to N server together. However, if all the servers are busy when a
request arrives from a source, the request gets queued. The queue can hold an unlimited
number of requests simultaneously. The Erlang-c formula calculates the probability of
queuing offered traffic, assuming that blocked requests stay in the system until they can be
handled. The formula assumes the request will never get dropped and increasing the number
of agents (in our case VMs) will maintain the desired service level. The mathematical
expression of Erlang-C formula can be expressed as follows:

PW =
AN

N !
N

N−A

(
N−1∑
i=0

Ai

i!) + AN

N !
N

N−A

Here: A is the total traffic offered in units of Erlangs, N is the number of servers and PW

is the probability that a customer has to wait for service. The call arrivals can be modelled
by a Poisson process and that call holding times are described by a negative exponential
distribution.

Limitations of the Erlang formula

When Erlang developed Erlang-B and Erlang-C traffic equations, they were developed based
on a set of assumptions, which are accurate in most situations, especially when there is high
traffic congestion. But these formulas fail to predict accurately the correct number of agents
required because of re-entrant traffic. At peak times, this leads the congestion of high-traffic
to more congestions. Additional circuits or agents needed to be available at that certain
congested traffic period in order to avoid this high-loss of traffic. There are some rules to
establish a queuing with Erlang such as [1]:

32

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

• If the number of jobs becomes infinite, the system becomes unstable. For stability,
have to make sure that the mean arrival rate is always less than mean service rate.
i.e.,

λ(mean arrival rate) < mµ(mean service rate per server)

• Finite population cannot have an infinite queue and finite queue drops if too many
arrive. So never has infinite queue

• Number of jobs is equal to waiting and servicing, i.e.,

n = nqueue + nservice

or, number of jobs in system = number of jobs waiting in queue + number of jobs
receiving service

• If jobs not lost due to buffer overflow the mean jobs is related to response time as:

mean(jobs in system) = arrival rate ∗mean(response time)

This also known as Little’s law [31].

• Time spent in system is sum of queue and service time, i.e.,

r(response time) = w(waiting time) + s(service time per job)

3.1.3 Migration of Virtual Machines

The term migration of VM refers to the moving of a machine entirely as a unit from one
physical server to another, in cloud term from one regional location to another. Migration
can be distinguished as two types: live and cold migration. In the live migration, there is
no downtime, that capability opens up a variety of practical uses. Cold migration, how-
ever, is the migration technique when the VMs are not required to be an shared storage
during migration. But it does demand a shut-down of the VM before it migrates. CPU
compatibility checks do not apply when migrating a VM with cold migration. Some of the
main tasks of cold migration are if the different data store is chosen as the migrating des-
tination, the configuration files such as NVRAM files (BIOS), virtual disks (if chosen) and
log files are transferred from source to destination hosts storage area. After the completion
of migration, the older version of VM is deleted from the source host. Fig. 3.1 shows the
traditional model for VM migration between different servers in the cloud environment.

Figure 3.1: Illustration of Traditional Model for Virtual Machine Migration

33

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

3.1.4 Self-management

The growing complexity of modern networked computer systems is currently the biggest
limiting factor in their expansion. In order to manage themselves, the autonomic systems
need to observe situations and events, "sense" their environment, and then make decisions
about which actions to execute and when. The aim of the system is to define a behavioural
schema which can be categorised as a different function of the essence of the autonomic sys-
tems in self-management. Some properties of self-management of systems for this project’s
system design should be as follows [24]:

• The system should be able to reconfigure itself to handle changes in its environment
or requirements without any human intervention.

• The system should be able to automatically adjust itself and related components to
handle common and frequent events, e.g., adding and removing nodes.

• Self-configuration properties need to be introduced, which means service architecture
will continue to work when nodes are added or removed during execution. When a
new node is introduced into an autonomic system, it will automatically learn about
its environment and then integrate itself. Meanwhile, if a node is removed, the other
nodes will also be aware of the changes and they can modify their own behaviour to
adopt the new situation.

• Self-healing properties need to be implemented, which will not rely on manual in-
teraction for identifying and debugging failures. An autonomic system can detect,
diagnose, repair, and sometimes predict the problems and failures on its own, regard-
less of the origin and nature of the problem. The purpose of self-healing is to pull the
system back from the wrong states into the desired states. This kind of behaviour
is called convergence. If a system is fully convergent, whatever the initial state the
system has, it will manage itself back to the equilibrium state.

• Self-optimisation properties can be implemented, which ensure after an extended
period of gaining "experience", an autonomic system will be able to learn, and then
continuously evaluate and change its run-time parameters to improve its operation.
Experience and log memory can be kept as a knowledge base the systems to use it to
find, verify and apply appropriate changes to upgrade their functionality.

3.2 Approaches

In order to achieve the project goal, an algorithm to adopt Erlang-C formula with EGT has
been proposed in this masters thesis. This simple but effective algorithm takes into account
the total average response time of each zone where the number of VMs are responding to web
services requests. These response time are gathered and learned by each individual VMs
and a decision has been made in order to aim for equalisation of response time throughout
the entire infrastructure of the distributed system. In this way, the convergence of the
whole system as one unit is reached where each individual VM migrate to different affected
zones and balance the requirements of service agents. Different variants of the algorithm
have been proposed to evaluate the system performance as an autonomous system.

3.2.1 General algorithm

The algorithm proposed in this project uses an evolutionary game theory approach. The
general principles of the algorithm are as follows:

• In this algorithm, each VM has its own ability to choose between either to stay in the
current zone or move to an affected zone. Here affected zone refers to the zone which
has an average response time less than a certain threshold.

34

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

• Each VM respond to web service requests from clients which are distributed via a
load balancer.

• Every individual VMs can calculate its own zone’s average response time from the
incoming request rate, service rate and number of VMs of that zone. This can be
calculated with Erlang-C model for multiple queues with the following equation:

ρ =
λ

µ ∗ c
(3.1)

where, ρ = Utilisation, λ = Request Rate, µ = Service rate and c = Number of
Servers, followed by Erlang-C formula (k) if more than c amount of jobs,

Pr(> c jobs) = ρc + ρc+1 + ρc+2 + . . .

=

∞∑
c+1

Pn

=
P0(cp)c

c!
∗
∑

ρn−c

=
[(cρ)c]

[c!(1− ρ)]
P0

(3.2)

• The average response time is calculated with the following:

– Probability when a packet comes, it needs to queue in the buffer. That is,
P(W>0) = 1 - P(N < c), Also known as Erlang-C function => Prob. Queue

– Average time of packets spending in the queue => Average Queue Time

– Return the average time of packets spending in the system (in service and in the
queue). i.e., (Prob. Queue / Average Queue Time) + (1.0 / service)

• Next the VM calculates the total average response time of all the zones in the infra-
structure.

• Based on the variants (Sec. 3.2.2 - 3.2.5) and conditions apply (such as VM’s current
zone’s response time is under the average threshold, different zone’s condition and
the probability of moving), VM decides to move to a candidate (affected) zone which
matches the certain criteria. The probability represents the chances of each VM to
each zone in percentage. It also represents how much better the average response time
of the current zone of the VM is compared to other zones. If no condition matches
VM stays in the current zone.

• VM continues to respond to the incoming requests until it calculates the moving
probability again in a certain interval.

• After a number of iterations, the average response time of all the participating zones
becomes equalised.

35

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

The proposed evolution algorithm is as follows:

Algorithm 1 Evolution Algorithm

1: Suppose, we have N number of zones denoted as Z, where Z = {Z1, Z2, Z3, . . . , ZN}.
2: Suppose, we have S number of VMs denoted as VM , where VM =
{VM1, V M2, V M3, . . . , V MS}.

3: Let, ri(t) denote the current response time at zone Zi.
4: Let, lij = 1 if VMi is in Zj , otherwise 0. It gives the location of VMi at instant time t.
5: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

6: VMi calculates total average response time of ZN derived by r̄(t) =

N∑
i=1

ri(t)

N and checks
if ri(t) < r̄(t).

7: If true VMi picks a candidate zone using one of the variants of algorithm, satisfying
r′i > ri where i′ 6= i.

8: VMi will move to a candidate zone with the probability r̄−ri
r̄ .

9: Repeat from Step 5 to Step 8.

Following up on the above general algorithm different variants of the proposed algorithm
are discussed in the following sections.

3.2.2 Uniform-site migration (naive)

In Naive Uniform-Site migration algorithm, the VM selects any zone naively as the candid-
ate zone to move. This is done in step 7 of the general evolution Alg. (1). The candidate
zone does not necessarily have the less average response time than the threshold of the
average response time of all the zones. According to this migration, the VM moves to any
zone ones it decides to migrate. Hence the name naively. This algorithm is designed to
experiment the behaviour of a VM in a zone taking the decision of next steps without any
having any knowledge or information of the network condition it belongs to. This results
the number of VMs in the affected zones fluctuates due to the fact is that none of the
VM deciding to migrate to equalise the average response time of the zones, rather it mi-
grates anywhere even the response time is in much better condition than other concurrent
zones. Naiveness of in the VM as a character to make a migration decision makes the entire
network converging in headless or aimless manner.

The algorithm works as follows:

Algorithm 2 Uniform-Site Migration (Naive) Algorithm

1: Suppose, we have N number of zones denoted as Z, where Z = {Z1, Z2, Z3, . . . , ZN}.
2: Suppose, we have S number of VMs denoted as VM , where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Let, ri(t) denote the current response time at zone Zi.
4: Let, lij = 1 if VMi is in Zj , otherwise 0. It gives the location of VMi at instant time t.
5: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

6: VMi calculates total average response time of ZN derived by r̄(t) =

N∑
i=1

ri(t)

N and
checks if ri(t) < r̄(t).

7: If ri(t) < r̄(t) in Alg. (1) is true, VMi choose Zi randomly, where Z > 0.
8: VMi will move to candidate zone with the probability r̄−ri

r̄ .
9: Repeat from Step 5 to Step 8.

The figure (Fig. 3.2) illustrates the flow diagram of Uniform-Site Migration.

36

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Figure 3.2: Flow-Diagram of Uniform-Site Migration (Naive)

3.2.3 Uniform-site migration (informed)

In the Informed Uniform-Site migration algorithm the VM selects the candidate zone to
move based on which zone’s response time is worse than the VM’s current zone’s response
time. This is done in step 7 of the general evolution Alg. (1). If the potential candidate
zone > 1, VM picks a random candidate zone. In this algorithm, the idea of emergence
behaviour has been reasonably implemented. Using this algorithm VM can independently
takes the next migration steps (which zone to choose as candidate zone to migrate to) with
some information about the corresponding zone’s information. The goal of this migration
technique not to resolve the issue with high average response time in a single step but
gradually come to the convergence point slowly. The theory evolutionary game has been
introduced in this migration scheme where the repeated rational decision making of indi-
vidual entity (in this case VMs) will result in a system convergence as a whole system. The
migrating VM will not choose the most affected zone as candidate automatically, rather
choose randomly any other zones which are affected more than its currently geo-located
zone. This means the least affected zone in the infrastructure will never be chosen as the
candidate zone. Number of VMs in a zone with high traffic (or multiple zones with lesser
traffic) will eventually get distributed amongst all the zone eventually.

The algorithm works as follows:

37

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Algorithm 3 Uniform-SIte Migration (Informed) Algorithm

1: Suppose, we have N number of zones denoted as Z, where Z = {Z1, Z2, Z3, . . . , ZN}.
2: Suppose, we have S number of VMs denoted as VM , where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Let, ri(t) denote the current response time at zone Zi.
4: Let, lij = 1 if VMi is in Zj , otherwise 0. It gives the location of VMi at instant time t.
5: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

6: VMi calculates total average response time of ZN derived by r̄(t) =

N∑
i=1

ri(t)

N and
checks if ri(t) < r̄(t).

7: Suppose, we have M number of candidate zone Zm, where
Zm = {Zm

1 , Z
m
2 , Z

m
3 , . . . , Z

m
M}.

8: If ri(t) < r̄(t) in Alg. (1) is true, VMi choose Zm
i randomly, where Zm >= 0.

9: VMi will move to candidate zone with the probability r̄−ri
r̄ .

10: Repeat from Step 5 to Step 9.

The figure (Fig. 3.3) illustrates the flow diagram of Uniform-Site Migration.

Figure 3.3: Flow-Diagram of Uniform-Site Migration (Informed)

3.2.4 Biased migration

The VM with this migration scheme calculates the candidate zone to move/migrate based
on the probability for each zones. Zones with the highest probability get the priority as a
candidate zone. VM picks the candidate zone with the highest probability to move. At a
particular moment, the migrating VM (the VM that has decided to migrate to a different
zone) can calculate the probability to pick the candidate zone based on the average response
time of that each connected zone in the network. In this case, the decision made by moving
VM is relatively affected by not just by the individual zones performance but all the zones

38

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

in the network as VM calculates the probability by calculating the total average of all
zones average response time including its own. This scheme is designed to influence entire
network condition of the framework as a single system. It is a slight upgrade from a previous
scheme (Alg. 3) where the VMs are given a better decision making properties to observe
the adjoining neighbours condition. This algorithm works as follows:

Algorithm 4 Biased Migration Algorithm

1: Suppose, we have N number of zones denoted as Z, where Z = {Z1, Z2, Z3, . . . , ZN}.
2: Suppose, we have S number of VMs denoted as VM , where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Let, ri(t) denote the current response time at zone Zi.
4: Let, lij = 1 if VMi is in Zj , otherwise 0. It gives the location of VMi at instant time t.
5: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

6: VMi calculates total average response time of ZN derived by r̄(t) =

N∑
i=1

ri(t)

N and
checks if ri(t) < r̄(t)

7: Suppose, we have M number of candidate zone Zm, where
Zm = {Zm

1 , Z
m
2 , Z

m
3 , . . . , Z

m
M}.

8: Let, prob_Zm
i denote the probability to move at candidate zone Zm

i .
9: VMi will pick and move to the candidate zone with max(prob_Zm

M) considering
ri(t) < r̄(t) in Alg. (1) is true.

10: Repeat from Step 5 to Step 9.

The figure (Fig. 3.4) illustrates the flow diagram of Biased Migration.

Figure 3.4: Flow-Diagram of Biased Migration

3.2.5 Single-point migration

In this Single-Point Migration algorithm, the VM selects the candidate zone to move based
on which zone’s response time is worse than all zone’s average response times. This is

39

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

done in step 7 of the general evolution Alg. (1). VM picks the zone with the highest
average response time i.e., the zone which is currently affected most, as the candidate zone.
The single-point reference for this migration naming coming from the concept where the
migrating VM tends to move to the same zone in a specific point of time. The designing
of this algorithm targeted to converge the distributed web service structure faster since all
the migrating VM choose the same zone as their destination. The main goal is to meet the
demand of most resource-deprived zone before the other less affected zones. The algorithm
works as follows:

Algorithm 5 Single-Point Migration Algorithm

1: Suppose, we have N number of zones denoted as Z, where Z = {Z1, Z2, Z3, . . . , ZN}.
2: Suppose, we have S number of VMs denoted as VM , where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Let, ri(t) denote the current response time at zone Zi.
4: Let, lij = 1 if VMi is in Zj , otherwise 0. It gives the location of VMi at instant time t.
5: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

6: VMi calculates total average response time of ZN derived by r̄(t) =

N∑
i=1

ri(t)

N and
checks if ri(t) < r̄(t).

7: Suppose, we have M number of candidate zone Zm, where
Zm = {Zm

1 , Z
m
2 , Z

m
3 , . . . , Z

m
M}.

8: If ri(t) < r̄(t) in Alg. (1) is true, VMi choose max(ZNZ
m
M) as candidate zone, where

Zm >= 0.
9: VMi will move to the candidate zone with the probability r̄−ri

r̄ .
10: Repeat from Step 5 to Step 9.

The figure (Fig. 3.5) illustrates the flow diagram of the algorithm.

Figure 3.5: Flow-Diagram of Single-Point Migration

40

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

3.2.6 Uniform-site migration (informed) using peer-to-peer com-
munication

This variant is slightly different than previous variants. This variant is not an additional
scheme rather considered as an extension to the previous ones. In this uniform-site migra-
tion algorithm, the zones are separated into groups, where each group has can have multiple
zones. The groups represent the connected zones as each group will try to equalise their
average response time over a period of time. Each group/cluster can have at least one zone
in common with another group or can be completely unaware of the other clusters. This
ensures all the zones are part of one or more groups in a topology. Fig. 3.6 shows the
number of groups with sets of VMs where each group have at least one zone in common,
i.e., while a group try to balance the average response time among the zones it contains can
be also affecting the zone from different cluster or group. Each group equalises the response
time using the method in Alg. 3. VM moves to the candidate zone within the same group
or cluster and the communication between inter-connected clusters are considered to be
peer-to-peer. If a common zone between two clusters is not affected by the evolutionary
steps of any of the clusters, the other connected cluster can remain idle through the entire
period.

The aim of this variant is to examine the performance of a uniform-site migration (informed)
scheme in different topology scenario. The migration variant is based on not just the
migration principal of the VM but also the inter-relationship with the other connected
zones and the network condition of those zones regarding their connectivity. The scheme
tends to be broadened to take cluster based connectivity (where the zones can be part of one
or multiple clusters) into account. Many web services can be designed to be separated in
multiple clusters depending on there geological distance and area of serving. In this scenario,
not every zone are considered to be aware of the network status of all the zones but only
their associative zones in the regional data-centre. Given the scenario, the emergence of a
system not only can affect the performance of the own conjoint member (zone) of the same
cluster, but also the zones those members might be affiliated with. It can also possible
that the affected zone in the cluster can never affect the number of VMs in common zones
between multiple clusters. This is to prove the concept that an action of a single VM in a
zone from the separate cluster can impact the outcome of the data-centre in a completely
different cluster which can be also not directly inter-linked together. Migrating VMs will
never move to another cluster even though there is a common zone between them.

Figure 3.6: Zones Separated in Multiple Clusters

The algorithm works as follows:

41

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Algorithm 6 Peer-to-Peer Communication Algorithm
1: Suppose, we have N number of zones denoted as Z in each group, where
Z = {Z1, Z2, Z3, . . . , ZN}.

2: Suppose, we have S number of VMs denoted as VM in each zone, where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Suppose, we have X number of groups denoted as G, where
G = {G1, G2, G3, . . . , GX}. Each Gi have a set of two or more zones.

4: Let, ri(t) denote the current response time at zone Zi.
5: Let Giri(t) denotes the current total average response time at Gi.
6: Let Gilij = 1 if VMi is in Zj of Gi, otherwise 0. It gives the location of VMi at

instant time t.
7: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

8: VMi calculates total average response time of GiZN derived by Gir̄(t) =

N∑
i=1

Giri(t)

N
and checks if Giri(t) < Gir̄(t).

9: If true VMi finds max(GiZN r̄i) and picks it as candidate zone to move.
10: VMi will move to candidate zone with the probability Ḡir−ri

Ḡir
.

11: Repeat from Step 7 to Step 10.

The figure (Fig. 3.7) illustrates the flow-diagram of variant Uniform-Site Migration using
Peer-to-Peer communication.

3.2.7 Uniform-site migration (informed) using graph partitioning

In this algorithm, Each VMs are part of one or two groups same as Alg. 6. This variant is
also an extension of Alg. 3, similar to peer-to-peer communication variant. The distinction
in this variant is that the VMs are bidirectional and VM in all the common zones in multiple
groups consider all the conjoined zones and their average response time while deciding to
migrate to affected zones. VMs can migrate to a different group as long as the zones they
are belongs to are part of that group. All the groups are connected in a ring topology as
shown in Fig. 3.8. This partitioning scenario is designed to implement the variant of Alg.
1, where the main focus is to investigate the performance of proposed evolution algorithm.
The VMs are all part of a single zone which must be connected to at least two different
zones. The scheme works in such a way that migration of a VM in a zone can affect only
the zones that are directly linked to the group they are part of. Implementing the informed
uniform-site migration in this scheme of general algorithm, each VM only has the choice to
migrate into a candidate zone which is in either of two groups. Partitioning the zones in
several different groups can/might interfere with the convergence behaviour of the distinct
group, i.e., a particular group of two connected zones only. It is a different approach to
peer-to-peer communication variant and this scheme is the extended version of the first four
basic variants of the evolutionary algorithm. The variant is to examine the performance
of a system, where the evolutionary game theory can only be applied to a single partition
when at the same time other co-related zones from different partitions can be affected by
the evolutionary procedure.

The Graph Partitioning variant of the algorithm works almost the same as Alg. 7 except
step 8 and 9 which is as follows:

42

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Figure 3.7: Flow-Diagram of Peer-to-Peer Communication

Algorithm 7 Graph Partitioning Algorithm
1: Suppose, we have N number of zones denoted as Z in each group, where
Z = {Z1, Z2, Z3, . . . , ZN}.

2: Suppose, we have S number of VMs denoted as VM in each zone, where
VM = {VM1, V M2, V M3, . . . , V MS}.

3: Suppose, we have X number of groups denoted as G, where
G = {G1, G2, G3, . . . , GX}. Each Gi have a set of two or more zones.

4: Let, ri(t) denote the current response time at zone Zi.
5: Let Giri(t) denotes the current total average response time at Gi.
6: Let Gilij = 1 if VMi is in Zj of Gi, otherwise 0. It gives the location of VMi at

instant time t.
7: At time ti, VMi collects average response time of current zone ri(t), according to

equation (3.2).

8: VMi calculates total average response time of GXZN derived by Gir̄(t) =

N∑
i=1

Giri(t)

N

where GXZN =
X∑
i=1

Gir̄(t) and checks if Giri(t) < Gir̄(t).

9: If true VMi finds max(GXZN r̄i) and picks it as candidate zone to move.
10: VMi will move to candidate zone with the probability Ḡir−ri

Ḡir
.

11: Repeat from Step 7 to Step 11.

43

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

Needless to say the last two variants (Alg. 6 and 7) have more number of zones and takes
the higher number of iterations (longer time) to converge as a whole. Fig. 3.8 shows all the
VMs in clusters are connected to each other in groups. All the directly connected zones in
each group are equalising their average response time within the group or with the any of
the connected zones in the linked groups at the specific point of time.

Figure 3.8: Zones Partitioned by Groups

44

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

3.3 Architecture Overview

The infrastructure to implement the algorithms consists of multiple instances (In this sec-
tions we will address all VMs as instances) in the Google cloud platform. Initially, every
zone will be equipped with different instances which are prepared to obtain certain pur-
poses in the complete infrastructure. All the different instances are designed to constantly
in sync with each other in a zone and are in a collaborative way serving as a distributed
web service. The following figure (Fig. 3.9) gives a brief knowledge of the model of the
infrastructure where each instance is independently and autonomously choosing their next
zone to migrate to.

Figure 3.9: Model of the System Infrastructure

3.3.1 Infrastructure requirements

As we discussed earlier in Sec. 2 and 2.5 we are deploying our web service in GCP and
Ubuntu images will be optimized to implement as instances’ OSs. All the instances are
running the latest version of Ubuntu and have been slightly adjusted to give all the system
a general initial basis. Multiple packages are installed in each instance and these packages
are essential for the systems configuration management. The packages such as Git, unzip,
curl, jq and bc are installed in every instance despite the purpose of the instances in overall
infrastructure. Additionally, some other packages are installed such as Consul, Consul-
Haproxy, HAProxy will be set up accordingly to the systems’ purpose which is discussed
in the latter sections.

Latest version of Ubuntu has time synchronization built in and activated by default using
systemd’s timesyncd service. Until recently, most network time synchronization was
handled by the Network Time Protocol daemon or ntpd. This server connects to a pool
of other NTP servers that provide it with constant and accurate time updates. Ubuntu’s
default install now uses timesyncd instead of ntpd, which connects to the same time

45

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

servers and works in roughly the same way, but is more lightweight and more integrated
with systemd and the low-level workings of Ubuntu. Servers OSs are by default set to the
UTC time zone, which is Coordinated Universal Time, the time at zero degrees longitude.
Consistently using Universal Time reduces confusion when our infrastructure spans multiple
time zones. To avoid having unsynchronised clock issue in Ubuntu the time-zone of each
instance is set to Europe/Oslo by using the following command:

sudo timedatectl set-timezone Europe/Oslo

The above command ensures that NTP time is set to all the systems and the time is
synchronised on the different geographically located instances. We are also using Ubuntu
16.04 and created an image called ubuntu-console for this project. As a machine-type
we have used n1-standard-2 for load-balancer instances and n1-standard-1 for consul-
master and nat-gateway instances. For worker instances we are using lightweight f1-micro
machine-type.

3.4 Regional Setup

Each region will be described as an individual data centre located in different geographical
location in GCP infrastructure. The data centres are referred asDCi where i = {1,2,3,....m}.
Each region considered to have a Consul-Master-DC, a LB-DC, a NAT-Gateway-DC
instance and multiple Worker-DC-X where X = {1,2,3,...,n} (recommended above 30).
Fig. 3.10 shows the setup of all the instances in a particular region.

Figure 3.10: Illustration of Regional Data-Centre Setup

46

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

3.4.1 Cross-region HTTP load-balancer setup

As discussed earlier (Sec. 2.5.1), the project needs to have a specific IP address that will
successfully forwards requests to the instances that is closest (geographically) to the users.
In order to do so, we create a HTTP(S) load-balancer that forwards traffic to instance
groups. This sort load-balancer works with instance groups and we need to set up groups
with lb-dc instances for each region in our infrastructure. To start with the setup we are
creating an IPv4 global static external IP addresses for cross-region load-balancer with the
following command:

gcloud compute addresses create <address_name> --ip-version=IPV4 --global

Next we are creating intances groups for each our regions for setup:

gcloud compute instance-groups unmanaged create <instance_group> --zone <zone>

We have created individual group names for different regions. Next, the lb-dc instances of
each region are then added to these instances groups respectively:

gcloud compute instance-groups unmanaged add-instances <instance_group> \
--instances <lb-dc_name> --zone <zone>

We also create health check options, as GCP health checks determine whether instances
are "healthy" and available to do work.

gcloud compute health-checks create http http-basic-check

For each instance group we define HTTP service and map a port name to the relevant port
(in this project we are using port 80):

gcloud compute instance-groups unmanaged set-named-ports <instance_group> \
--named-ports http:80 --zone <zone>

The web-map back-end services needed to be created and their parameters need to be
specified. We are setting protocol field of the back-end service to HTTP (we are using
HTTP to go the to web services) and adding http-basic health check to it:

gcloud compute backend-services create <web_map> --protocol HTTP \
--health-checks http-basic-check --global"

We add the instance groups as back-ends to the back-end service we created. It defines the
capacity (maximum CPU utilisation or maximum queries per second) of the instance groups
it contains. In this setup, we are setting the balancing mode to be CPU utilisation, the
maximum utilization to be 80%, and the capacity scaling to be 1 for each region. Capacity
scaling can also set to 0 if we want to drain a back-end service.

gcloud compute backend-services add-backend <web_map> \
--balancing-mode UTILIZATION --max-utilization 0.8 \
--capacity-scaler 1 --instance-group <instance_group>-resources \
--instance-group-zone <zone> --global

Now we create a default URL map that directs all incoming requests to all our lb-dc
instances followed by creating a target HTTP proxy to route requests to our URL map:

47

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

gcloud compute url-maps create <url_map> --default-service <web_map>
gcloud compute target-http-proxies create <target_proxy> --url-map <url_map>

Finally, global forwarding rules are created to route incoming requests to the proxy using
the load-balancer IP address we have created earlier:

gcloud compute forwarding-rules create <forward_rule> \
--address <lb_ip_address> --global --target-http-proxy <target_proxy> \
--ports 80

The initial cross-region HTTP load-balancing is done when all the lb-dc instances’ IP ad-
dresses are propagated with the url-map. Appendix: B.1, are created in order to automate
the setup of creating and adding instance groups for the initial infrastructure setup.

3.4.2 Google cloud DNS setup

In this project, the Google cloud DNS setup requires to have a common URL to reach the
forwarding-rules of the cross-region load-balancer. As we discussed in Sec. 2.5.1, we
can add multiple potential URLs that are all identified by the same destination address.
The request to reach any of the servers will be chosen on the basis of their geographical
location, i.e., whichever server is located geologically close to the origin of the requests.
This is done by using the url-map we have created in the previous section. This is mostly
useful as we need to confirm that all the servers closest to the users will be serving first. At
first, we need to create managed-zone (project-brainiac) in Google cloud DNS. Then we
need to add the A and CNAME records to that managed zone. The following commands
need to run to create and set up the initial state of the cloud DNS. Before all, we need
to make sure we have obtained a registered domain. For this project the domain name is
project-brainiac.eu.

gcloud dns managed-zones create project-brainiac \
--description "A NSA maters thesis project DNS" \
--dns-name project-brainiac.eu

The dns.sh script (Appendix: B.2) runs and dynamically finds all the load-balancers.
The following snippet is running at the initial setup when the new load-balancer instances
are created and their external IPs are added as the A record to the domain name of the
managed-zones at the end of the script.

ALL_OLD_RECORDS=$(gcloud dns record-sets list --zone=$project |
tail -n+2 | awk ’{print $4}’ | grep -oE "\b([0-9]{1,3}\.){3}[0-9]{1,3}\b" |
while read line; do echo "\"${line}\""; done | tr ’\n’ ’ ’)
ALL_NEW_RECORDS=$(gcloud compute forwarding-rules list |
grep http-cr-rule | awk ’{print $2}’)
eval "gcloud dns record-sets list --zone=$project"
eval "gcloud dns record-sets transaction start --zone=$project"
eval "gcloud dns record-sets transaction remove --zone=$project
--name="project-brainiac.eu." --type=A --ttl=300 $ALL_OLD_RECORDS"
eval "gcloud dns record-sets transaction add --zone=$project
--name="project-brainiac.eu." --type=A --ttl=300 $ALL_NEW_RECORDS"
eval "gcloud dns record-sets transaction execute --zone=$project"

Every time the transaction starts a file named transaction.yaml is created. All the actions
are added to this file. After executing the transaction changes are then inserted into the
records. Since the CNAME will not be changed always for managed-zones, we can add
this by default to the project-brainiac zone before executing the transaction yaml. The
following step is not mandatory.

48

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

gcloud dns record-sets transaction add --zone project-brainiac \
--name www.project-brainiac.eu --type CNAME project-brainiac.eu. \
--ttl 300

Now we have a set of A records attached to our domain name. Every time the URL
project-brainiac.eu or www.project-brainiac.eu is called in a browser by a user from
any geographical location, the request will be forwarded to the closest load-balancer that
is nearest to that user request. This makes sure we exhaust the closest zone first before we
forward request to the next nearest servers.

3.4.3 Service account setup

A service account is a special account that can be used by services and applications running
on Google Compute Engine instance to interact with other Google Cloud Platform APIs.
Applications can use service account credentials to authorize themselves to a set of APIs and
perform actions within the permissions granted to the service account and virtual machine
instance. In simple words, a service account is an identity an instance or an application
is running with. We can use service accounts to create instances and other resources. If
we create a resource using a service account, that resource is then owned by the service
account. Service account of an existing instance can also be changed. An instance can have
one service account only.

In order to make our instances more versatile and dynamic, we have to make sure that every
instance has access to Google cloud platform and its resources. This will make the instances
to observe and run control command independently without any help of centralised systems’
help. Once created we need to grant roles for that service account. Service accounts are
needed to call with scopes. A service account usually consists the following format (in a
form of an email) and can be created in IAM service account in Google console:

[SERVICE-ACCOUNT-NAME]@[PROJECT_ID].iam.gserviceaccount.com

In this project, a service account is created and granted owner permission so it can grant all
the authentication permissions necessary to the instances in order to access the resources.
As a scope, we select the Google cloud-platform. We need to ensure that every instance
creation by gcloud SDK contains this two options.

gcloud -q compute instances create example-instance --image <image_name> \
--machine-type <machine_type> --zone <zone> \
--service-account [SERVICE-ACCOUNT-NAME]@[PROJECT_ID].iam.gserviceaccount.com \
--scopes cloud-platform

3.4.4 Consul-Master instance setup

To start with each consul-master-dc instance will be equipped with Consul software as
this server will be used to register and de-register worker instances in a particular zone.
To set up the consul, it is set up by downloading the zip version of the binary package of
consul and copied in a /usr/local/bin directory of the Linux OS. The following snippet
is the part of Appendix: C.1 which is runs as a part of the start-up script while creating
the consul-master-dc instances in each zone.

wget https://releases.hashicorp.com/consul/1.0.6/consul_1.0.6_linux_amd64.zip
unzip consul_1.0.6_linux_amd64.zip
mv consul /usr/local/bin
mkdir -p /var/lib/consul/
mkdir -p /usr/share/consul
mkdir -p /etc/consul.d

49

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

In addition, several consul data directories will be created for the consul to generate logs
and create services. Next, we are setting up consul so that it can run as a service in the
background. In order to do that, we add the file consul.service to the /etc/system-
d/system/ directory. The content of the folder would be as follows:

[Unit]
De s c r ip t i on=Consul
Documentation=https : //www. consu l . i o /

[S e rv i c e]
ExecStart=/usr / l o c a l / bin / consu l agent −s e r v e r −ui −bootstrap−expect=2 −data−

dir=/tmp/ consu l −node=${consul_hostname} −bind=${ consul_ip } −datacente r $
{ consul_dc} −con f i g−dir=/etc / co$

ExecReload=/bin / k i l l −HUP $MAINPID
LimitNOFILE=65536

[I n s t a l l]
WantedBy=multi−user . t a r g e t

This above consul.service configuration selects the consul-master instance as the consul-
server and with the -bootstrap-expect option we are letting the servers know that the
agent is running in a server mode. Server nodes are responsible for running the consensus
protocol and storing the cluster state. The client nodes are mostly stateless and rely heavily
on the server nodes. Before a Consul cluster can begin to service requests, a server node
must be elected leader. Thus, the first nodes that are started are generally the server
nodes. Bootstrapping is the process of joining these initial server nodes into a cluster.
The -bootstrap-expect option informs Consul of the expected number of server nodes and
automatically starts the leader election process when that many servers are available. In
our case, we are keeping the number of selection process between just two consul servers.
To prevent inconsistencies and split-brain situations (that is, clusters where multiple servers
consider themselves leader), all servers should either specify the same value for -bootstrap-
expect or specify no value at all. Only servers that specify a value will attempt to bootstrap
the cluster. Consul document recommends 3 or 5 total servers per data centre. Since we
are going to deploy a very small infrastructure, the number of consul servers are set to be
only 2.

In the above configuration the consul_hostname, consul_ip and consul_dc will be
identified by running the following commands respectively in each consul-master instance:

consul_hostname=$(hostname)
consul_ip=$(hostname -I)
consul_dc=$(hostname | sed "s/consul-master-//g")

The -node, -bind and datacenter options are used to integrate instance name, IP address
and data centre name respectively for each consul-master server.

Furthermore, the options -ui sets that the user interface to monitor the consul servers will
be deployed in the consul-master instances. In order to set this up, we add the following
json to the ui.json file in /etc/consul.d directory (This directory is for .json files that
will hold any extra configuration. This a directory for Consul configuration. Consul loads
all configuration files in the configuration directory):

{
" addre s s e s " : {
"http " : " 0 . 0 . 0 . 0 "
}
}

Finally, the consul.service needs to run at system startup and need to be enabled in the
system daemon:

sudo systemctl daemon-reload

50

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

sudo systemctl start consul.service
sudo systemctl enable consul.service

3.4.5 Load-balancer instance setup

Similar to the consul-master-dc server in a data centre, we setup lb-dc instances for each
zone. We start with setup consul in the load-balancer which is almost identical as consul-
master except the -join option will be included in the consul.service configuration. This
-join option will let the load-balancer know to join the consul cluster by pointing it to the
first server (consul-master). The following snippet of the script Appendix: C.2 will run at
the start-up of first time the lb-dc instance boots up. This snippet is part of the initial
setup for load-balancer:

lb_hostname=$(hostname)
lb_ip=$(hostname -I)
lb_dc=$(hostname | sed "s/lb-//g")
consul_ip=$(gcloud compute instances list | tail -n+2 | \
grep consul-master-${lb_dc} | awk ’{print $4}’)

And the consul.service file in the /etc/systemd/system/ directory will be created (by run-
ning the lb.sh script) with the following content:

[Unit]
De s c r ip t i on=Consul
Documentation=https : //www. consu l . i o /

[S e rv i c e]
ExecStart=/usr / l o c a l / bin / consu l agent −s e r v e r − j o i n=${ consul_ip } −data−dir=/

tmp/ consu l −node=${lb_hostname} −bind=${ lb_ip} −datacente r ${ lb_dc} −
con f i g−dir=/etc / consu l . d/

ExecReload=/bin / k i l l −HUP $MAINPID
LimitNOFILE=65536

[I n s t a l l]
WantedBy=multi−user . t a r g e t

It is noticeable from above configuration of consul.service that the consul_ip information
from the same data centre are extracted by using the Google cloud SDK (gcloud SDK)
commands. This is required since we are trying to setup the load-balancer which can easily
recognise a consul-master from the same data centre. The lb_dc are selected by extracting
the load-balancer instance’s hostname.

After, enabling the consul.service in the system daemon of the instance it the consul service
is restarted. The consul.service of the lb-dc will then join the consul-master cluster and
a leader selection process will occur (since the bootstrapping process was set to 2 servers)
and it will join as a member/agent of consul cluster for that zone. Next, we need to install
HAProxy to the load-balancer instance as it is the requirement to balance the incoming
request to the back-end servers. This is done by simple step at the beginning of the startup
script lb.sh.

The load-balancer can only balance the loads between servers only when it is manually
added to its configuration. Since we are working on a dynamic environment where the
worker instances will be migrating to different zones independently we need to consider
using the service that will discover the services that the worker instances are providing
and publish this to the load-balancer. Hence the Consul service is introduced as a service
discovery agent. In the load-balancer, we need to setup consul servers to listen for any client
hosts that is providing a web services. Upon discovering the agents with services Consul
will automatically register that service and publish this to the load-balancer (HAProxy).
The load-balancer will then add that host as back-end server dynamically and make it
the part of its entire distributed web service. The agent (migrating VM) also need to

51

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

de-register from the consul-master of the zone that it is leaving from. This requires a
inclusive configuration management which starts with setting up consul-haproxy to the
lb-dc instances in each zone. The consul-haproxy is a daemon for dynamically configuring
HAProxy using data from Consul. The daemon watches any number of back-ends for
updates, and when appropriate renders a configuration template for HAProxy and then
invokes a reload command, which can gracefully reload HAProxy. This allows for a zero-
downtime reload of HAProxy which is populated by Consul.

Similar to the consul installation we download the binary and copy it to the /usr/local/bin
directory. This allows the consul-haproxy to run from anywhere in the OS. We create a
consul_ha.cfg file in the /etc/consul.d/ directory which contains a template for haproxy
configurations:

81
82 f rontend http_front
83 bind ∗ : 80
84 s t a t s u r i /haproxy? s t a t s
85 default_backend http_back
86
87 backend http_back
88 balance roundrobin
89 {{ range . c }}
90 {{.}}{{end}}
91

The above is some of the important snippets of the consul_ha.cfg template file. The http-
back block will be populated as soon as consul server register a new agent and that new
agent is providing a web service. In this project, we are naming our service as webserver
which will be discussed in the Sec. 3.4.6.

Finally, the consul-haproxy will be run in order to change the HAProxy configuration every
time a new webserver agent is registered.

sudo consul-haproxy -addr=localhost:8500 -in /etc/consul.d/consul_ha.cfg \
-backend "c=webserver@${lb_dc}:80" -out /etc/haproxy/haproxy.cfg \
-reload "/etc/init.d/haproxy restart"

The above command runs and looks for any webserver agent that is providing in the loc-
alhost:8500 of the consul service. The address 127.0.0.1:8500 is used by consul as default
to query services. These are address and port of the Consul HTTP agent. The value
can be an IP address or DNS address but must include the port. This also is specified
CONSUL_HTTP_ADDR environment variable. If an agent is registered it dynamically
populate the template from /etc/consul.d/consul_ha.cfg file with all the agent with ser-
vice named webserver as consul member and add it as back-end server to the haproxy.
This webserver name query is specified as the -backend option with "c=webserver@lb-
dc:80" which literally telling the consul-haproxy to add all the agents which are providing
the service webserver to the load-balancers port 80. The populated template is then used
to replace the old haproxy.cfg file which stores the HAProxy configuration and reloads
the HAProxy service. This makes the back-end servers added to the configuration auto-
matically. Like we discussed earlier, the servers will also be removed from the back-end
configuration once they de-register themselves from the consul cluster gracefully.

This process needs to always run in the background of the load-balancer instances. The
command is set to run as background with the following command:

nohup <consul-haproxy command> &>/dev/null & disown

3.4.6 Worker instance setup

The worker-dc setup almost similar to consul servers except it is designed to provide web
service to the architecture. Similar to other instances, we start with setting up consul in the

52

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

worker instances. Instead of running consul as systemd service we run the consul register
and join the consul cluster in the same data centre in the background. The process is almost
same as running it as consul.service in consul-master-dc and lb-dc instances but simpler to
implement. As the worker instances are designed to migrate on demand or certain criteria
it is easier to start the process consul cluster joining process in a simpler manner. In order
to achieve this, after consul setup we run the command in the worker-dc instances in the
background:

worker_hostname=$(hostname)
worker_ip=$(hostname -I)
worker_dc=$(hostname | cut -c8-10)

nohup sudo consul agent -server=false -data-dir=/tmp/consul \
-node=${worker_hostname} -bind=${worker_ip} -enable-script-checks=true \
-datacenter ${worker_dc} -config-dir=/etc/consul.d &>/dev/null & sleep 3 \
&& consul join consul-master-${worker_dc}

The above command starts by running the consul as a client by setting the option -
server=false. When the consul command run properly it will then send a request to
join the cluster to the consul-master of the own data centre. A consul client can request
to join any of the consul servers that are doing the service discovery. When the worker
instance joins successfully it will be registered as consul agent of the same data centre. The
worker instance also provides service as a back-end server of the distributed web service.
We setup Nginx as the webserver in these instances.

sudo apt-get install -y git unzip nginx
sudo ufw allow ’Nginx HTTP’
sudo systemctl start nginx

We write a service definition configuration file in /etc/consul.d/ directory and name it
webserver.json. We have a service named "webserver" running on port 80. Additionally,
we’ll give it a tag we can use as an additional way to query the service. The webserver.json
file contains the following:

{
" s e r v i c e " : {

"name" : "webserver " ,
" tags " : ["HTTP"] ,
" port " : 80

}
}

Although the setup of a worker is simpler, there is additional configuration necessary for
setting up worker-dc instances. As the limitation of GCP quotas, the ephemeral external IPs
are limited to 8 IPs per zone. Ephemeral external IP addresses are available for instances
and forwarding rules. Ephemeral external IP addresses remain attached to an instance only
until the instance is stopped and restarted or the instance is terminated. If an instance is
stopped, any ephemeral external IP addresses assigned to the instance are released back into
the general Compute Engine pool and become available for use by other projects. When a
stopped instance is started again, a new ephemeral external IP address is assigned to the
instance.

As we mostly going to use the private IPs on instances (except lb-dc), it is not mandatory
to add an external IP while creating worker-dc instances. It can be avoided by adding
the option –no-address to the gcloud SDK command. But this means the default NAT
IP will not forward any external HTTP/s packets towards internal addresses. We need to
ensure that all the worker instances have access to outside the internal network and can
access the internet, i.e., we have to enable HTTP/s access to the instances. This enables
the worker instances to reach the port 80 and 443 and can reach the load-balancer’s IP

53

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

externally to read the network conditions for migration purpose. A nat-gateway instance
will be dedicated to each zone for worker instance to forward its HTTP request and response
back. In the next section (Sec. 3.4.7), the detail description of nat-gateway-dc setup has
been discussed.

Furthermore, we get a copy of the CSV generator script (csv-gen.sh) and corresponding
migration script (migration-uniform-naive.sh/ migration-uniform-informed.sh/ migration-
biased.sh/ migration-single-point.sh) in the worker instance and set it to run as a back-
ground process every certain interval. Appendix: D.1 runs every 5 secs to gather and cal-
culate average response time in each zone and Appendix: D.2-D.5 script will run between
every 5-10 mins depending on which variant of our designed algorithm will be implemented
in our infrastructure. Each of the migration scripts are designed to implement our designed
variants of algorithm (Alg. 2-5) in our cloud setup in order to observe the performance of
the algorithms in real-life test-beds. Thorough clarification of these migration rules imple-
mentation in the worker instances will be discussed in Chapter. 4. The migration scripts
are running as background process of worker instances:
nohup sudo /bin /bash −c ’ whi l e [t rue] ; do s l e e p 30 ; /tmp/ pro j e c t−b ra i n i a c /

s i d e k i c k s /csv−gen . sh ; done ’ &>/dev/null & disown
nohup sudo /bin /bash −c ’ whi l e [t rue] ; do t imer=$ (((RANDOM % 300) + 300

)) ; s l e e p $t imer ; /tmp/ pro j e c t−b ra i n i a c / s ta r tup s /worker −[va r i an t] /
migrate −[va r i an t] . sh ; done ’ &>/dev/null & disown

The above background process runs the csv-gen.sh (Appendix: D.1) script in each 30 secs
interval and the migration script (depending on the migration scheme we like to implement
in the network) in randomly between 5-10 mins.

3.4.7 NAT-Gateway instance setup

In the nat-gateway-dc instance creating some prior setup need to be done. This particular
instance is designed to forward http packets to and from internal private network. First
we have to make sure the firewall-rules for internal and ssh already exists in the default
GCP network (we can create a complete set of legacy network using different name [32]):

gcloud compute firewall-rules list
...
default-allow-internal default INGRESS 65534 tcp:0-65535,udp:0-65535,icmp
default-allow-ssh default INGRESS 65534 tcp:22
...

The settings are enabled while creating these instances with gcloud SDK:

gcloud compute instances create nat-gateway-dc --network default \
--can-ip-forward --image <image_name> --machine-type <machine_type> \
--zone <zone> --tags nat --metadata-from-file startup-script=./nat-gateway.sh

gcloud compute routes create no-ip-internet-route-dc --network default \
--destination-range 0.0.0.0/0 --next-hop-instance nat-gateway-dc \
--next-hop-instance-zone <zone> --tags no-ip-<dc> --priority 800

The above commands create a nat-gateway-dc instance to a specified zone which has the
ability to forward IP for that particular. This instance act as a NAT gateway on the default
network. The second command creates a route to send traffic destined to the Internet
through gateway instance. Setting the priority of this route ensures that this route takes
precedence if there are any other conflicting routes. 1000 is the default priority and a value
lower than 1000 takes precedent.

While creating a new worker instance in that particular zone without an external IP we
only need to add the tag with option –tags set to no-ip-dc in this way:

54

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

gcloud compute instances create worker-dc-example --network default \
--no-address --image <image_name> --machine-type <machine_type> \
--zone <zone> --tags no-ip-<dc> --metadata-from-file startup-script=./worker.sh

All the worker instances can now reach the internet via the nat-gateway-dc instances. The
gateway instance needs an additional configuration in order to forward all the requests/re-
sponses. We run a script (Appendix: C.3) while creating nat-gateway-dc instance which
will enable the ip4 forwarding by ip_forward file in /proc/sys/net/ipv4/ directory to
"1" and adding the POSTROUTING rule of iptables NAT rule to MASQUERADE.

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
sudo iptables -t nat -A POSTROUTING -o ens4 -j MASQUERADE

Now all the instances that have no-ip-dc(*) tags (with corresponding data-centre) can access
the internet via the nat-gateway-dc(*) instance of the same region.

3.4.8 Migration procedure

To implement the algorithms, we are creating different migrations scripts in this part of
the project, which are designed to initiate worker instance’ behaviour according to corres-
ponding variants of algorithms at the system startup. This ensures that the instances will
apply algorithms uniform-site (naive/informed) migration, biased migration, single-point
migration depending on which behaviour we like to promote in each instance. To start
with the migration procedure in the machines, a script csv-gen.sh (Appendix: D.1) will
run at intervals to gather average response times from each active load-balancer instances
in the network. The information of individual back-end servers of load-balancer which are
providing the web services are gathered by reading through the HAProxy socket using the
following command:

curl -sSL ’http://$lb_ip/haproxy?stats;csv;norefresh’ | cut -d "," -f 2,61 | \
column -s, -t | grep worker | awk ’{print \$2}’

This particular command gets the statistics of HAProxy in a CSV format and only collects
back-end webserver name and its response time at a particular moment. The average
response time of each data-centre is then calculated by using sum of all the back-end servers’
response time/number of back-end servers. The script will also create a log file and keep
running in the background for future migration decision purpose. The different migration
scripts to invoke migration behaviour in the worker instances are described in the following
sections.

Uniform-site (naive) migration procedure

Appendix: D.2 runs on worker instances which implies the Alg. 2 in the project architecture.
The script initiates such behaviour in the instances where it migrates to a candidate zone
which is selected randomly. This means a worker instance will run a check if its own data-
centre’s average response time is lower than the response time threshold (i.e., sum of all the
zones’ average response time/number of zones). If it does, then the worker instance will
decide to migrate and run a selection method where it randomly chooses one of the other
zones as candidate region to move. Next, the worker creates a new worker instance in that
candidate zone and gracefully removes itself from the consul-master of its own data-centre.
This part is done by running a simple command in the worker instance:

consul leave -http-addr=127.0.0.1:8500

55

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

This above command runs to gracefully remove the worker from the consul-cluster by send-
ing a notification to the port 8500. Without this particular command, the consul-server will
not recognise that the worker instance has been detaching itself and HAProxy will continue
to forward HTTP requests to this instance as consul-master will never update the back-end
server information. The graceful detachment process makes the consul-master remove the
instances from its cluster and let the load-balancer to restart its settings with the current
alive back-end servers.

At the final step of this migration procedure, the worker instance will shut-down and delete
itself from the infrastructure. The new instance in the candidate zone runs the same setup
process at the bootup and behave similarly in an autonomous manner as its originate
instance.

Uniform-site (informed) migration procedure

Similar to previous procedure uniform-site informed migration also applies the same sort of
behaviour to the worker instances. Appendix: D.3 applies the designed algorithm (Alg: 3)
to the worker instances in this scenario and create the environment where worker instance
will choose their candidate region based on which region/s have the average response time
higher than the worker’s current region. The procedure is similar to the uniform-site naive
migration scheme but in this case, the workers are given an option to inspect and calculate
the network situation more effectively. In this migration procedure, worker instances are
more aware of network condition of other data-centres. This makes the worker take a
better decision when it comes to choosing a candidate region. The information aspect of
this behaviour makes the infrastructure’s average response time saturate in a better manner.
Instead of migrating naively or randomly to any data-centre workers are designed to make
smarter choices in this case. Similar to naive migration, the worker instance creates a
worker instance to the candidate region. If there are more than one potential candidates,
worker chooses the candidate randomly. Finally, the worker removes itself from its own
data-centre’s consul cluster gracefully and delete itself from the infrastructure.

Biased migration procedure

In this migration scheme, the worker instances can take further steps to implement the
biased migration algorithm (Alg. 4). In addition, to gather and calculate average response
time of all the data-centres on different regions, worker instances are also capable of cal-
culating the probability to choose a candidate region. The probability is calculated based
on the corresponding regions’ average response time and this probability is then used to
compare the performance of each region separately. Several individuals steps have been
taken to measure this probability for each data-centre. The candidate region chosen by
the worker is the data-centre that has the closest probability to migrate to. This means
the probability that is closest to moving (probability = 1). The probability margins to
select a candidate is between different data-centres are very little and this makes the biased
migration procedure more sophisticated migration scheme for a system design. Appendix:
D.4 applies this migration behaviour to the worker nodes.

Single-point migration procedure

The single-point procedure is simple but also effective schema that implies the candidate
region selection more realistic way. The procedure involves a selection process where the
worker instance calculates the average response time of the data-centres and choose the can-
didate region to migrate based which region has the maximum average response time. This
is a real-life test-bed implementation of Alg. 5 and is added as a behaviour to the worker
machines with the migrate-single-point.sh script (Appendix: D.5). The candidate zone
now then gets a new instance if the worker instance decides to migrate (considering its

56

Methodology and Approaches NSA5930 : Master’s Thesis in Spring 2018

own data-centre’s average response time under the recommended threshold). Once decides,
migration procedure takes place and worker instance remove itself from own data-centre.

3.4.9 Initial setup script

Finally, a script is provided to initially run all the above scripts in steps to setup the Google
cloud for a real-life test-bed scenario. The automate (Appendix: E.1) script takes the user
inputs as variable to initiate an automated process to start up a distributed web service
with autonomous VM (and implement the corresponding migration script) in the Google
cloud.

In the next chapter, we are conducting multiple tests based on simulation to analyse the
performance of our designed algorithms. We also administer thorough experiments in real-
life test-bed scenarios and evaluate the performance of the proposed algorithms.

57

Part III

Conclusion

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

Chapter 4

Results and Analysis

In this chapter, we are discussing the simulation and real-life test-bed results of the de-
signed algorithms. First, we implement them in the simulation using python to observe
the performance of algorithms in various distinctive situations. The graphs are created for
the simulation to evaluate the performance maps in order to distinguish the best possible
outcome of the designed variant of the general evolutionary algorithm. Then the algorithms
are implemented in real-life test-bed using GCP and gather the numerical data to asses the
behaviour of the autonomous VMs in with the evolutionary game theory. The results are
then compared to each other and analysed.

4.1 Results: Test-Simulation

Using Erlang-C formula with evolutionary game theory, several test simulations are con-
ducted. Some initial parameters are being set accordingly for all the variants:

The initial number of VMs for each zone = 10
The Initial service rate for each zone = 15

Table 4.1: Request Rate ID Sets in Periodic interval for Test Simulation

Request Rate Algorithms Z1 Z2 Z3 Z4 Z5 Z6
Set A Uniform-Site Migration,

Biased Migration,
Single-Point Migration

70 35 60
Set B 35 70 60
Set C 70 60 35
Set A Peer-to-Peer

Communication

70 30 35 40 50 60
Set B 30 35 40 50 70 60
Set C 35 40 50 60 70 30
Set A

Graph Partition
70 30 35 60

Set B 30 35 70 60
Set C 35 70 60 30

We conducted the test-simulations for Uniform-site (naive/informed), Biased and Single-
point migration with 3 zones only. For simulations with Peer-to-Peer communication and
Graph partition are conducted with 6 and 4 zones respectively. Table. (Tab. 4.1) shows
the set of request rates for different zones in individual simulations. In the table zones
are marked as Z and request rate sets are indicated as Set. The static request rate sets
refer to the scenario when the incoming HTTP requests to a zone remain static in entire
process where dynamic request rate sets are referring to the situations when the rates of
requests are changing after a fixed amount of time (in this test in iterations). Based on the

61

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

number of zones for each simulation a unique set of iteration time has been set for different
scenarios. Each iteration is considered to be 10 times the number shown as X-axis of all the
graphs for a better perspective. Average response time will be referred to as Avg. Resp.
Time for rest of this chapter. Graphs will be presented to latter sections to visualise the
performance of the algorithms in the controlled simulation environment, where X and Y
axis’s of each plot refers to the number of iterations of the test and avg. resp. time (in
secs) respectively.

4.1.1 Results: Simulation of uniform-site migration (naive)

In this test-simulation, the plots are conducted by calculating the number of VMs in per
zone and the request rate incoming to the zones the VM is located to. On each iteration, a
VM can be migrated to a new zone if certain conditions are met as we discussed in Sec. 3.2.1.
The naive Uniform-site migration scheme (Alg. 2) has been implemented in this simulation.
Fig. 4.1a and 4.1b represents the test-simulation results in graphs with static and dynamic
request rates respectively. The performance of this algorithm is observed in a better way
with these graphs. As we described before in Sec. 3.2.2, in this particular algorithm, the
migrating VM does not consider the network condition while choosing a candidate zone to
move. The candidate zone is rather selected randomly by a VM instance and the avg. resp.
time of other zones are not taken into account. This migration process is considered to
be headless or aimless. The random migration pattern affects the convergence time of the
entire network which we can observe in Fig. 4.1a. The repeated action of random migration
does make the system converge after a certain number of iterations due to the nature of
moving of the VM to different zones. The convergence period is much longer with this
variant of the algorithm as the VMs’ migration behaviour does not follow any specific rule
to reach a goal. The system does not work as a whole yet the convergence takes place since
the VMs in the most affected zone will not consider moving to a different zone. At one
specific moment, this results in the most affected zone in the network will gain an extra VM
and continue to keep it in the zone until its avg. resp. times get lower than the threshold.
The newly migrated VM (or the older VMs) at affected zone have lower chance to migrate
to another location (zone) as it will calculate its own zone to be the most affected zone in
the migration selection process. After a number of iterations, the VMs will be redistributed
among all the zones and the avg. resp. times at all zones becomes stable. This result shows
emergence behaviour in the system as we can observe the graph showing in Fig. 4.1a are
starting to converge after almost 9000 iterations (as each 100 represents 1000 iterations in
the graphs). A sample of calculations of response times in all zones after 8800 iterations
are shown below:

VMs in zone_1 : 11
VMs in zone_2 : 8
VMs in zone_3 : 11
resp_time_zone_1 : 0.06676504898677925
resp_time_zone_2 : 0.06670175909994472
resp_time_zone_3 : 0.06669546394754529
Iteration: 8800 / 12000

The system becomes stable and stays in the same state after the 10000 iterations until the
end of the test. Despite the random naive movements of the migrating VMs, the system
manages to converge in a stable network condition as a whole. The stabilising procedure
tends to be distributed among all 3 zones in the test-simulation network. In the graph it
is observed that all the zones are slowly stabilised in the same way, i.e., keeps the similar
pattern, especially in zones 1 and 2. Although these two zones have the highest and lowest
request rates respectively and migration are randomly placed, after a few iterations, the
zones started to show emerging pattern. Zone 3, on the other hand, has the moderate
request rate and the avg. resp. time is neither increases nor decreases for this zone. Running
the same simulation multiple times might result in a different pattern in the graph.

62

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

(a) Static

(b) Dynamic

Figure 4.1: Simulation of Uniform-Site Migration (Naive)

63

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

Conducting the similar experiment with dynamically changing request rates in the simu-
lation results the graph in Fig. 4.1b. With dynamic request rates, the simulation results
starting to converge similarly to the static simulation. It is noticeable that the system con-
verges at almost 4000 iterations in Fig. 4.1b. When the request rate changes for each zone
the avg. resp. time changes and immediately starts to show the emergence behaviour in
the system. With the same amount of iterations, the graph shows the same pattern as first
part of the request rate set (set A). The total avg. resp. time of all the zones comes to the
same level and continue to do so until the third set of request rate is introduced. Similar to
previous sets, the proposed evolution algorithm starting to show the similar behaviour for
the infrastructure. A significant difference in this test than other variant test is that the
stabilisation of the whole network needs a higher number of iterations for each set (almost
never converges completely with 4000 iterations). This is due to random movement of the
VMs in the network which cannot stabilise a single affected zone quickly enough.

4.1.2 Results: Simulation of uniform-site migration (informed)

In this test simulation, the VMs are given a better migration property than naive uniform-
site migration. According to this variant of algorithm specification, the VMs are moving
to the zones which have only the worse avg. resp. time than their own data-centre. The
characteristic of VMs gives a better strategy to implement the evolutionary game theory in
a test-simulation. The graph in Fig. 4.2a represents the static the performance of Alg. 3 in
the simulation with static request rates in all the zones. It is observed in the static graph
with the informed uniform-site migration, the total convergence of the system is faster than
the previous test (Sec. 4.1.1). This is considered to be a better approach to pick a candidate
data-centre in the network, as the migration steps of the VM has strategic option to find the
performance of its own zone’s performance against other connected zones. Having a choice
to find the more affected zone/s, migrating VM can make a better independent decision.
This impact the network condition of all the zones in the infrastructure, especially the more
affected zones after a period of time. In each step, VM can pick one zone that has only worse
avg. resp. time. In case of multiple potential candidate zones, VM can pick one randomly.
Some randomness are still included in this test. Since the VMs are given a better behaviour
property, the convergence steps are shorter in this simulation as we can notice in Fig. 4.2a.
Z1 and Z3 start to receive VMs from Z2 since it has the lowest avg. resp. time. In result,
both more affected zones (Z1 and Z3) starts to show better response times in the graph.
Due to randomness, both affected zones can receive the similar amount of migrating VMs
or it can be only one zone gets all the VMs. Running the same simulation as Fig. 4.2a,
the system shows the almost identical results. The system gets stable (almost with same
response times) at about 4000 iterations, which is a bit faster (ca. 1000 iterations) than
the previous test. The system shows stability throughout the rest of the simulation.

Fig. 4.2b represents the test including dynamic request rate in all the zones. We implemen-
ted the same principle of choosing the worse candidate zone (randomly) with dynamically
changing sets of request rate. The changes of request rates do have much impact on the
convergence of the system as we can notice it converges almost after the same iterations
in the second and the third sets (set B and C) of request rates. As usual for the first set
of requests, the avg. resp. times are stable at 4000 iterations, just before the second sets
have been implemented. As it is shown in graph (Fig. 4.2b), the zone with the new highest
rate (Z2) becomes unstable and have a rise in response time. It is observable, that on the
first set (0-4000 iterations) the response time of the zone with the moderate rate (Z3) was
stable until the second set started. Here the zone with the lowest rate (Z1) dramatically
dropped and started to increase the response time in a steady manner. The curve for this
zone starts to slowly emerge to the convergence point, where the other two zones started to
gets stabilised from almost 4200 iterations. In the rest of this set two most affecting zones
gives the similar curves which indicate that they are stabilising equally. The stabilisation
in the second set happened quicker than the first set. At the third set of this simulation,
the rates are changed again and the network shows the same emergence behaviour. It is
considered, that repeating this behaviour multiple times will not affect the outcome of the

64

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

test.

(a) Static

(b) Dynamic

Figure 4.2: Simulation of Uniform-Site Migration (Informed)

65

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.1.3 Results: Simulation of biased migration

In this part of the simulation, the VMs have been given a smarter approach to deduct the
network condition as a whole instead of making a decision to migrate based on each affected
zones’ conditions. The biased migration scheme is distinguishable than other variants of the
evolutionary algorithms as it chooses the candidate zone with some probability. Hence the
name Biased is a good fit for this algorithm. In the simulation, when the incoming request
rates are infused, the VMs checks for the highest probability to move to each affected zone
with a simple calculation. The effect of VM migration depending on the smallest probability
different between the zones are observed in the static biased migration graph (Fig. 4.3a).
As we can notice that the Z3 has the lowest incoming HTTP request rate of all three zones
and Z1 has the highest amount of request rate during the entire test-simulation period. Z1
starts to stabilise slowly as most of the VMs are migrating from Z2. Surely, VMs in Z2
decides to migrate more often than of Z3. When it does it checks the highest probability
to be chosen as candidate zone. In addition, it also picks a threshold for probability for all
the network together and picks the zone which is closest to that. This ensures a slow and
steady step towards the stability of the response times of all the zones. This simulation
is a better test of the general evolution algorithm, as it does not picks the candidate by
its current condition but the condition of all the individual conjoint zones, i.e., the entire
framework. The approach, however, gives similar performance in the test as it shows in
Fig. 4.3a except the curve representing Z1 and Z3 seemingly have more interplay between
them, than of Z2 curve. This means, in this test, the most affecting zones get stabilisation
in response times among them first before it balances with the zone with the lowest traffic
(in this simulation Z2 with lowest request rate). However, Z2 stabilises the response time
slowly to the convergence point and at almost 4000 iterations all the curves merge into one
point. The response times in all zones holds to that position until the simulation has been
completed. There are some fluctuations in response times noticeable around 7500-8500
iterations, after which the system stabilises again.

Fig. 4.3b were conducted using dynamic request rate sets. In the first set of request rate,
the system shows the equivalent behaviour as the static rate. The zones with web-services
start with three different avg. resp. times depending on the number of requests per zone.
Similar to static test-simulation, the two most affected zones (Z2 and Z3) becomes steady in
the same fashion. The curves between these two zones overlap at several points and slowly
merge with Z1 at the convergence point. The system remains stable and an equilibrium is
merged in the network. At almost 4000 iterations, all the nodes are met in the same point
(at almost 0.0668ms) and continues until the second set of request rates are introduced.
At this point, Z2 becomes the zone with highest avg. resp. time and starting to stabilise
with Z3 first. These two zones continue to show the similar curves until it matches the
Z1’s response time. The pattern repeats itself with the third set (set C) of rates as well.
The convergence of this simulation has a smoother curve in the graph, especially between
the affected zones as both get migrated VMs from zones with least response time. This
represents the implementation of probability to choose the candidate zone that has a better
effect on response time equalisation process. Increasing the number of zones in the network
(5 or more zones) can give us a better view in this matter.

66

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

(a) Static

(b) Dynamic

Figure 4.3: Simulation of Biased Migration

67

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.1.4 Results: Simulation of single-point migration

The final variation in the evolution algorithm implies the migration scheme where the
VMs choose to migrate to the zones which are most affected by the request rates, i.e., the
zone with highest avg. resp. time in a network. The process can be considered as the
most simplest and natural selection of candidate zone as ideally a migrating VM should be
considered to move to a affected zone by considering its network condition, without any
need of other attributes to contemplate. The graph (Fig. 4.3a) for the particular migration
variant shows network convergence with the static set of request rates in a simulation. The
slopes representing three zones in the simulation showing the algorithm principle has been
adequately being implemented. As it is shown in the static test-simulation graph, zones
with higher request rates started to balance their response times first. It is because due to
the zone with lowest response time (Z2) constantly making sharing its VMs to those two
most affected zones (Z1 and Z3). The curve representing Z1 response time is very rounded
or have a smooth arch which represents that the response time of this zone is getting equal
to the rest of the connected zones in the network simulation. On the other hand, the
Z3 curve has a small fluctuation at the beginning of the simulation as it started also to
share its VMs to the Z1. When the Z1 and Z3 response time becomes almost equivalent,
the migrating VMs in those zones stop moving from their corresponding zones. Rather
these zones keep getting the VMs from Z2. The simulation (Fig. 4.4a) shows that the
equilibrium of this network using single-point migration scheme takes quite long time. The
reason behind is predicted as the number of VMs are migrating to affected zones using a
traditional method (migration to highly affected zone in the network) takes a cost in the
emergence behaviour. The choice of picking the most affected zone as a candidate without
considering the situation of rest of the pool of VMs shows no significant target to address
the network equilibria issue. The system becomes converged at almost 6000 iterations which
is much longer than any other variants of the general algorithm.

The exactly similar behavioural pattern is shown when we introduced the dynamic request
rates in the simulation for single-point migration. The graph in Fig. 4.4b represents such
simulation. In the graph, the network converges almost at the same time with static requests
(at 6000 iterations). In this set (set A), the avg. resp. time of all the zones shows almost
simultaneous changes. This is a strange result then is shown in the static version. But at
the second set of requests, the highly affected zones (Z2 and Z3) are showing the similar
behaviour again, where after certain fluctuations both zones are equalising in a similar way.
But the Z1 (with the lowest request rates) took the longest time to reach the converging
point. At the third set, the results are much better when the most affected zones are almost
equalised on an exact pattern and with about same response time. At 14000 iterations, the
zone with moderate traffic (Z2) gains better response time average. Zone3 (with lowest
avg. resp. time in last set C) shows the almost exact model as the previous sets’ zones with
lowest request rates.

68

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

(a) Static

(b) Dynamic

Figure 4.4: Simulation of Single Point Migration

69

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.1.5 Results: Simulation of uniform-site migration (informed) us-
ing peer-to-peer communication

This test has a different approach than previous test-simulations. We administer this exper-
iment with six zones. The zones are separated into clusters in the same topology as shown
in Fig. 3.6. As we explained in Sec. 3.2.6, the migration VMs will only choose the candidate
zones which is in the same clusters as their own zone. The graph/plot showing in Fig. 4.5a
and 4.5b are representing the test results of the simulation with static and dynamic request
rates to the zones respectively. Running the simulation with python several times we can
observe that the system is converging in a very fluid curve. This means, all the zones in
the network are converging in a simultaneous manner. This behaviour of the convergence
gives us an interesting overview of how all the individual component of the system working
together to achieve the same goal. In the simulation, our algorithm for uniform-site mi-
gration (informed) has been implemented to all the migrating VMs. Since the VMs have
no inter-exchange relationship between other VMs the decision it makes to pick the next
candidate zone is only influenced by the condition of the other zones in the same network
(not necessarily in the same cluster in this case). The result with static request rates (Fig.
4.5b) exhibits a gradual increment/decrement of the every zone’s avg. resp. time in a
controlled simulation environment. Running the same simulation over and over again gives
us an overview of all zone’s emergence behaviour with our evolution algorithm design. It
is noticeable that the zones which have the worst avg. resp. times are converging faster
than the ones have lower avg. resp. times. Also at the same time, the zones with lower
response times come to the converging point, i.e., the point in the graph (at almost 3000
iterations). Except for the Z2, all the zones are converged at some point around 11000
iterations. Z2 take much more longer times emerge with the other zones. Such behaviour
of the Z2 was continuing to persist in all the individual experiments we conduct for this
simulation. We will discuss and analyse this situation at the Chapter 5. In the rest of the
simulation process, the response times in all the zones stay almost at the same value which
depicts that the infrastructure stays stable till the rest of the simulation.

In the next figure (Fig. 4.5b), we present the test-simulation result for the uniform-site
migration using peer-to-peer communication with dynamically changing request rates. In
this test, the first set (set A) of request rates are injected into the zones until next set of
the dynamic set. Naturally, the behaviour of the system is as same as the test with the
static set. Zones are converged at the same point almost after the same iterations and
Z2 (with the lowest request rate) takes longer to meet the convergence point. After 6000
iterations, the new set (set B) of dynamic request rates are introduced to the simulation.
The system reacts to the new set in a strange manner. Here Z1 gets the lowest request rate
and react very weakly to that. Zone 4,5 and 6 starts to converge slowly at the way and
Zone 2 and 3 do the same together. It shows that the Zones are working as a group instead
of emerging together as a whole system. The convergence period of this much longer than
other periods. The zones do show a behaviour to slowly reaching towards the point but
it seems like in this session or period the zones do not adjust their response times with
the whole system. Changing the request rates at 12000 iterations the zones quickly shows
fluctuations in response times and begin to adjust the system-wide avg. resp. time in an
exact same pattern. This pattern is almost similar to the first set of the test except for
this time the zones with heavier loads adjust their response time simultaneously and a fixed
interval. Zone with the lowest amount of request rate (in this set Zone6) behaves in the
similar fashion as previous tests.

We have tested this simulation with a longer period of time (18000 iterations) than other
test-simulations. The system equalising period is longer with peer-to-peer communication
topology and the number of zones is a big factor in this test. Undoubtedly, more zones mean
the more VMs in the network. The main purpose of conducting this test is to inspect the
network scenario with a higher number of system components and more complex topology.
We increase the number of iterations to adjust the system according to long emerging period
behaviours.

70

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

(a) Static

(b) Dynamic

Figure 4.5: Simulation of Uniform Site Migration using Peer-to-Peer Communication

71

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.1.6 Results: Simulation of uniform-site migration (informed) us-
ing graph partitioning

In this test-simulation, we are experimenting the performance of our designed uniform-site
migration (informed) algorithm on a scenario where all the zone in the network are divided
into groups. Each group have only two zones and each zone is part of at least two groups.
This scenario gives us a ring topology which is explained in Sec. 3.2.7. For this test,
the number of zones is set to only 4 as we want to minimise the convergence period of the
network. However, the number of VMs per zone is still the same as all other test-simulations.
The total simulation time (in our case iterations) is also lowered to 12000 iterations. We
start with the simulation first with the static set of request rates. Fig. 4.6a shows the
graph that represents the results of this entire test-simulation. Analysing this graph we
can observe that the zones (Z1 and 4) with higher rates started to stabilise their response
time as they proceeded to receive migrating VMs from zones (Z2 and 3) with lower request
rates. Faster convergence is perceived in this simulation. The curves/slopes representing
avg. resp. time of zones with high/low traffic load (request rates) are decreased/increased
in parallel respectively. The communication between all the zones are very sophisticated
as the effect on a zone in one group will impact the game strategy of the other group
that zone is connected as well. The graph showing that even though the groups have no
domination on each other and the migrating VMs are taking decision independently and
autonomously, the network can still show emerging behaviour as the strategy of the game
(evolution algorithm) kicks in. Repetition of the same strategy over all the zones resulted in
the same way which confirms that our algorithm is working efficiently by making migrating
VMs pick the most affected zones as the candidate despite which group they belong too.
Having the option to migrate to any zone of any group makes the migration procedure
much efficient and productive when it comes to target a faster equilibria in the network
avg. resp. time. Once the stabilisation takes place, the system becomes stable and keeps
the condition as same during the rest of the simulation. The total converging time of the
network (stabilising avg. resp. times in all the zones at the almost same level) is nearly
close to 3500 iterations which is much faster than the simulation with naive uniform-site
migration and single-point migration despite the fact that this test consists more zones and
complicated scenario.

Then we implemented the same simulation, but this time we use the dynamically changing
request rates set. In figure (Fig. 4.6b), all the zones converging at the same rate as the
previous static rates’ test. The simulation has the similar result as simulation experiment
with uniform-site migration (informed) (Fig. 4.2b) and constantly equalising in the same
fashion. The only difference is noticeable in this graph that the number of zones that are
converging together is now 3 instead of only two due to the reason we have increased the
number of zones in this test. The curve showing avg. resp. times for the highest request
rates always coming down to convergence point in the exact same manner, i.e., the response
times of all the zones are nearly the same with the second set of requests. This is because
as in the first set (set A) the zones had an equal number of VMs in each of them but
at the end of this period all the migrating VMs are already moved to the most affected
zones. The VMs are distributed equally to all the affected zones. This is promising since
it confirms that the variant of algorithm taking care of the situation and system reaching
an equilibrium. As the second period starts with set B, the zone with the best response
time is always started to send their own migrating VMs to the affected zones and so do the
zones with moderate request rates share its VMs to the zones which need the most VMs.
The randomness was removed from this algorithm and the VMs are given a better strategy
to migrate. After the similar amount of iterations, the zones are coming to the same state
every time the request rates are changing.

72

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

(a) Static

(b) Dynamic

Figure 4.6: Simulation of Uniform Site Migration using Graph Partition

73

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

The above test results confirm us that the implemented different variants of evolutionary
algorithm are efficiently working and feasible to any given conditional scenarios. These
tests represent the adaptness and capability of the algorithms to reach a target, in our
case a network equilibrium. In the following sections, we will experiment the similar ex-
periments with the proposed algorithms but in real-life test-bed scenarios with GCP and
Google instances. The test-bed results can confirm us further about the performance of our
algorithms and give us more insight on how the algorithm can actually affect the instances
in the existing cloud systems.

4.2 Results: Test-Bed

In the test-bed scenario, the algorithms are put to the test in real-life cloud settings. The
similar concept of implementing the different algorithms to check the network performance
is carried out in this section. The initial experimental parameters are set for all the zones
in same as follows:

The initial number of VMs for each zone = 7

This test will be set by adapting to GCP cloud by creating a number of zones with VMs.
The following table shows the specifications for all the instance machine types running in
the GCP data-centres in the initial step. This machine types can give us an overview of
what is the capacity of each DC, which is similar to service rates of our test-simulation.
Table. 4.2 shows the specifications for all type of instance we set up in the GCP:

Table 4.2: Instances Specifications for Test-Bed Scenario

Machine Name Machine Type CPU Memory
lb-dc n1-standard-2 2 vCPU 7.5GB
consul-master-dc n1-standard-1 1 vCPU 3.75GB
nat-gateway-dc n1-standard-1 1 vCPU 3.75GB
worker-dc f1-micro 1 shared vCPU 0.6GB

We will address the zones as data-centres (DC) and migrating VMs as worker-instances
for this test. To simulate the incoming HTTP request to the distributed web services we are
using AB benchmarking tool as request generator. This entire setup and test infrastructure
have been described thoroughly in the earlier sections (Sec. 3.3). The following table
(Table. 4.3) gives our reader a glimpse of values and parameters set for test environment:

Table 4.3: Initial Parameters for Test-Bed Scenario

DC Name DC Location Client Location Number of Requests (-n) Concurrency (-c)
DC-1 europe-west3-c europe-west3-a 999 700
DC-2 us-central1-a us-central1-c 999 800
DC-3 southamerica-east1-b southamerica-east1-a 999 600

All the clients are generating and sending the HTTP requests with AB tool with the same
properties:

ab -n <no_of_requests> -c <no_of_multiple_requests_to_make_at_a_time> <server_domain_name>

The above commands create an imitation of HTTP requests incoming from different clients
close to the geographical locations of different regional instance groups of the data-centres
in the network. These clients will constantly create the same amount of requests to the
web service URL which will be load-balanced to all the worker-instances which are serving

74

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

as back-end servers of the load-balancers instances. Each worker-instances are providing a
simple Apache web server as a part of distributed web service.

Data Collection Process

As we mentioned in the earlier section, we have given our web service a domain name
to reach to the back-end servers with autonomously migrating instances. The requests
to reach the web servers are sent to the worker-instances and replied back to the clients.
The response times of the all the back-end servers are then measured in milliseconds and
collected via the status report of the each data-centre’s load-balancers. The load-balancing
running in this instances is done by the HAProxy application which can provide the current
real-time status of its back-end server. These status reports are valuable in this research
work since we are going to make migrating decision in workers based on the current state of
the data-centres. Since an lb-dc instance will forward all the HTTP request to the worker-
instances it can be considered as the important point of data collection for each region. In
each data-centre, the response time of each worker-instance is then summarised and divided
by the number of total workers in that data-centre. This will give us the avg. resp. time
of that data-centre at that point of time. A test script is created to calculate the data at
an equal interval and collected for further analysing. The following part of data collection
process gathers all the IP addresses of the lb-dc:

declare -a lb=(’lb-dc1’ ’lb-dc2’ ’lb-dc3’)
for argh in ${lb[@]}; do
lb_ip=$(gcloud compute instances list | grep $argh | awk ’{print $5}’)
done

The addresses are then used to gather HAProxy status for each DCs:

curl -sSL ’http://$lb_ip/haproxy?stats;csv;norefresh’ | cut -d "," -f 2,61 | \
column -s, -t | grep worker | awk ’{print \$2}’

Then every response times are collected, summarised and finally avg. resp. time are
calculated.

avg_resp_time_all_dc=$((sum_all_resp_time / no_of_workers))
<dc>_resp_time=$(echo "$avg_resp / 1000" | bc -l)
<dc>_worker_time=$no_of_workers

This simple script (Appendix: F.1) dynamically finds all the ephemeral IP addresses of the
lb-dc instances and finds all the worker-instances response time by reaching the HAProxy
status page. Then all the response times are summed together and divided by the number
of workers at that particular moment. HAProxy provides the response time status in
milliseconds and we are converting into seconds for a better perspective. This script runs
in intervals and appends the data to a CSV file.

Our test-bed includes comprehensive experiments by using various tools. The data collec-
ted as CSV format are projected in plots with the exponential weighted moving average
(EWMA) to administer the performance evaluation of the applied algorithms. We discuss
the individual test on our infrastructure in the cloud with the variant of algorithms in the
following sections. A script (Appendix: F.2) to create a performance graph for each al-
gorithm has been provided to create EWMA graphs with 100 window span. We are using
the EWMA graphs to plot these tests as in the uncontrolled test as such can introduce
a lot of noises in the plot. This is due to the reason that in the real-life scenario of the
cloud environment the response time in the servers does not always gradually increases or
decreases. The fluctuating nature of avg. resp. time will not any concrete projection of

75

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

test results unless we narrow it down to moving average of the test instead of current data
in every single point of the graph. A simple example of such problem is shown in Fig.
4.7, where we try to project the raw data extracted from a data-centre. The plot will also
represent the raw data of avg.resp. time of the data-centre along with its EWMA.

Figure 4.7: Test-Bed Sample of Raw Data and EWMA Graph of A Data-Centre

As we can see EWMA is a better presentation than of raw current data of the data-centre
which can give us a better perspective of the algorithms’ performance. The lines showing
the EWMA is the better choice when it comes to project the entire systems’ convergence
period, instead of including all the raw data in the graph. In case of many data-centres in
the network, we need to use a cleaner way to abstract the data for analysis purposes. In
this graph (Fig. 4.7), the X and Y axis’ are graphed as avg. resp. time (in seconds) of the
DC and time (in the format: Date Hour:Minute) of testing respectively.

The scripts for collecting response time for all the data-centres in the network and saves it
in the background. After a certain random interval (details are in Sec. 3.4.8) the migration
procedure gets activated and picks a candidate data-centre based on the implied scheme.
Some randomness are included for these operations activation since we are not allowing all
the worker-instance to make the decision and migrate at the same time. To balance the
number of instances in the back-end, we are letting the nodes become ready for migration in
the different period of convergence. Based on the data gathered in each worker are used to
make migration steps if the worker decides to move. If not migrating, the worker-instance
uses the data for future migration procedure along with the newly updated data. If no
migration happens the worker’s migration procedure goes back to sleep and continue to run
as the regular web server for its current data-centre.

76

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.2.1 Result: Test-bed with no migration

Before we start applying our proposed algorithms in the test-bed we like to find out how a
cloud system reacts to the incoming HTTP requests when no migration algorithm is running
in the worker-instances. We run a test-bed experiment, where all the web servers will be
just response to incoming requests from corresponding nearby geo-located clients/users for
the entire test period. Fig. 4.8 gives us the simple EWMA graph of this test result.

Figure 4.8: Test-Bed EWMA Graph for No Migration

It is clearly shown from this graph that the avg. resp. time have never gets changed on
the data-centres as the number of user’s requests increases to a specific area. Without
an appropriate migration scheme, the regions with higher users (HTTP requests) tends
to suffer more from QoS of web services as the number of users directly responsible for
response time in data-centres. In the DCs with lower response time there can be many
idle instances (that are not migrating) which can be ideally shared among the affected
regions. Lack of communication of all the centres and absence of awareness of connected
network conditions makes the system vulnerable and ineffective. A quick fix to this sort
of scenario can be scaling the number of instances according to the requirement of the
user’s requests to maintain a suitable level of avg. resp. time. But as we mentioned in
the introduction, this solution costs insignificant amount for the administrator of the large
distributed web services based on a multi-regional cloud infrastructure. The graph (Fig.
4.8) gives a better confirmation of necessary of a suitable algorithm to address this issue in
the cloud technology.

4.2.2 Result: Test-bed of uniform-site migration (naive)

This test-bed includes the implementation uniform-site migration (naive) in all the worker-
instances across the network. In each data-centre, every worker nodes register itself as
individual web services. However, as for migrating schemes, each worker will run the naive
migration algorithm and adapt to the migrating principle accordingly. As the worker-
instances in this algorithm choose in a completely random fashion despite the network
condition, especially the condition of the most affected data-centre, the worker migrates
can end up moving to any data-centre. Action as such can have an effect on the evolution

77

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

procedure of the network as we can observe in Fig. 4.9. This particular figure represents
the EWMA of avg.resp. time of the entire test-bed using naive uniform-site migration on
the worker-instances. It is visible that the response time becomes very high in the early
stage of the experiment as the HTTP requests starting to get distributed with the help
of load-balancer to the back-end servers. In our test, the DC1, DC2 and DC3 getting a
moderate, heavy and regular amount of traffic respectively (refer to Tab. 4.3).

Figure 4.9: Test-Bed EWMA Graph for Uniform-Site Migration (Naive)

As the migration script gets enabled and VMs in each data-centre proceed to pick a random
DC to migrate, the avg. resp. time in each data-centre starts to adjust the response time
according to the number of worker-instances in their own region instance group. The
algorithm does not have any particular view on what should be the strategy to reach
a system goal, i.e., the convergence of the whole network response time. None of the
DCs shows any emergence behaviour as we can see in Fig. 4.9. At the beginning of the
experiment, DC1 and starts to get the most HTTP requests when DC2 gets a moderate
amount. Even though the difference between the concurrency of the HTTP requests are
very close to each other for all the clients, we should see little variance on the avg. resp. time
accordingly. The system never really converge throughout the entire test period. We can
see in some point the DC3 response time rises to the point where it meets the DC1 response
time, but after a small period of time DC3 start to show uneven graph considering the other
two data-centres. DC1 and DC2 also never becomes equal in response time until it reaches
the end of the test-bed experiment. Even though it seems close to each other, running the
scenario longer will show that the response time levels gets further from each other. All the
workers in DCs migrating aimlessly in this test. This scenario shows no improvement on
emergence behaviour in the infrastructure and the convergence of the system never really
took place entirely. It might occur after a certain period of test, but it cannot be assured
that this is certain in such case.

4.2.3 Result: Test-bed of uniform-site migration (informed)

The next test-bed experiment in GCP includes the implementation of uniform-site migration
(informed) as the worker-instances migration principle. Similar to the above experiment,
we spawn equal amount of worker-instances and apply this migration scheme. The test

78

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

results are also included in a form of a graph where EWMA of avg. resp. time are shown.
In the Fig. 4.10, we can see the avg. resp. time of DC3 takes the longest amount of time to
reach the convergence point. DC1 and DC2 get equalised almost immediately after the test
starts. These two data-centres have the highest number of incoming HTTP requests from
clients. As the migration principle of instances is to move to another data-centre which has
higher avg. resp. time its own data-centres, the workers can finally take better decision
for migrating. This is the first time we can see a developing behaviour in the system. The
data-centres shows a better relationship between them as the number of worker-instances
are getting well-distributed among them. Since the data-centre DC3 with the lowest traffic
loses its worker-instances the avg. resp. time slowly rises to its highest point. At the
middle of this experiment, we can see the response time of DC3 rises to its highest pick
and then starts to become again. At the same time, the DC1 starts showing a high pick
in its own response time and it is assumed that it started to receive worker instances from
DC3 and DC2. After a certain period, DC1 stabilises its own avg. resp. time and all three
DCs become starting to show an equilibrium in the network. This is to consider as the
convergence in the system has taken place.

Figure 4.10: Test-Bed EWMA Graph for Uniform-Site Migration (Informed)

In addition, we like to point out that even thought the response times are tends to be
fluctuate a little bit they quickly comes back to the same level and continues to show the
same behaviour during the rest of the test. Randomness to pick the destination for workers
when more than one DC is picked as candidate DC also takes an affect in the graph. This
results the DCs’ response time becomes irregular in some intervals if the workers moves to a
less affected data-centre due to random moving. The random property has been eliminated
from the algorithms in the next experiments. However, the algorithm perform quite well
under such circumstances and always adjusted itself despite the irregularity. This is a very
interesting progress on the general evolution algorithm which can be analysed further for
better research purposes.

4.2.4 Result: Test-bed of biased migration

In this experiment, worker-instances are adapted to a better strategy than previous two
variants of the algorithm. Not only they can pick a candidate data-centre observing the all

79

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

DCs network condition but also with a probability of moving to the destination DC. The
worker-instances have a better awareness of the entire infrastructure and the decision that
has been taken by all the instances collectively can/will influence the emergence behaviour
all the individual components. Running this test with biased migration algorithm we can
get the graph representing the results of the test-bed scenario. The graph is shown with
EWMA curves in the Fig. 4.11.

Figure 4.11: Test-Bed EWMA Graph for Biased Migration

In the graph, it is noticeable that the convergence period is almost the same as the test-
bed experiments with uniform-site migrations (Sec. 4.2.2 and 4.2.3). The ability to pick a
specific destination for migration, workers can now decide more efficiently and intelligently.
At the beginning of the test, all the average response time eventually get higher according to
their rate of client’s HTTP requests. The instance groups then gathered the data from each
data-centres and started to, calculate the probability to migrate to a destination data-centre
which has the highest avg. resp. time for last certain period. When the migration mode
gets activated in the worker-instances, they find the best probability and picks the data-
centre which has the probability. Since the probability margins are really thin, migrating to
a certain DC is also become very limited and precise. We can notice the response times in
all the DCs are gradually coming to the same point instead of quick increase. The effect is
due to the probability property that we introduced to the migration scheme. The DC with
the highest number of requests (DC2) decreases the response time as it starts to receive
migration instances from other two DCs. DC1 gets the moderate number of requests, so it
keeps the avg. resp. time stable as it gains or loses instances. Finally, workers from DC3
started to migrate to either DC1 or DC2 (mostly DC2 as it has the highest response time)
and response time in this data-centres increases due to lack of enough web servers in the
back-end. This test shows a much better promising on not only the total emergence of the
system but also the keeping the response time in the network in stable positions. Running
the test for a similar amount to time gives a system-wide convergence at all the time. The
fluctuations in the response time of all the data-centres are in very small amount and more
steady than previous attempts.

80

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.2.5 Result: Test-bed of single-point migration (informed)

In this final test, we investigate our last variant of the algorithm (single-point migration)
where the nodes/worker-instances migrates to next destination (data-centre) based on their
avg. resp. times only. This is the general principle of VM migration where the instances are
given a choice to pick the candidate data-centre in a natural selection, i.e., the data-centre
with highest avg. resp. time gets the migrating instances. A similar investigation has been
conducted in the GCP test-bed infrastructure but this time single-point migration scheme
has been implemented on the workers. The results of this test have been graphed in Fig.
4.12 and performance of the algorithm has been analysed.

Figure 4.12: Test-Bed EWMA Graph for Single-Point Migration

All the DCs’ response time are showing as EWMA plot in the graph. This algorithm
shows a promising improvement in the convergence of the network as it is observed that
all the data-centres stabilise their corresponding response time fairly quicker than every
other algorithm (uniform-site (naive/informed) and biased) tests in previous sections. The
migration scheme is quite straight-forward and prominent with any nature-inspired col-
lective behaviour. As the migration operation proceeds, the data-centres with the lowest
amount of incoming requests starts to gain on response times, since the migrating instances
started to remove itself from those data-centre. When the instances get distributed to the
heavy-traffic instance groups (in this case DC2), the avg. resp. time on these zones starts
to get low. This procedure seems to be quicker in this test-bed. This can be assumed to
be more effective since the calculation of the finding the candidate zone is fairly simpler for
migrating worker-instances. But in the further part of the experiment, we can notice that
the avg. resp. time of DC3 does get quite high at some point. This can be possible of quick
dispersing of the back-end servers has an effect on the data-centre and this change need to
get adjusted. In this test events, the DCs are failed to keep their avg. resp. time stable
perfectly as test-bed with biased migration algorithm. However, the response time started
to equalise itself with other nodes after a certain period and all the avg. resp. time of every
DCs in the network become almost similar at the end of the experimental duration.

81

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

4.2.6 Result: Test-bed of migration schemes with dynamic HTTP
requests

We extended our previous test-bed experiments with dynamically changing HTTP requests
from the clients. This means, in this scenario the clients request to access the web service
in the specific geographical area will increase/decrease in the mid-experiment. Tab. 4.4
shows the request rate sets we have implemented for each client individually. With this test
scenario, we like to observe the performance of the variants of migration algorithms when
the number of users/clients changes dynamically in different nearby regional locations. We
need to investigate how our migrations schemes adjust the number of idle instances in the
data-centre autonomously in order to balance the overall network response times. The
primary goal of this tests is to evaluate the proposed variants of the algorithm in the
dynamically changing environment for a better perspective of the algorithms’ performance.

Table 4.4: Dynamic HTTP Request Sets in Clients for Test-Bed Scenarios

Set A Set B

Client Location Number of
Requests (-n) Concurrency (-c) Number of

Requests (-n) Concurrency (-c)

europe-west3-a 999 700 999 600
us-central1-c 999 800 999 700

southamerica-east1-a 999 600 999 800

We start by sending HTTP requests (with AB tool) with the first set of clients (set A)
towards the web service domain name. The graph (Fig. 4.13) represents the EWMA graph
for the test-bed scenario with uniform-site migration (naive) when the number of clients
requests are changing. We have changed the set A to B in the middle of the experiment. In
the graph, we can observe that the network never converges throughout the first set session
which is similar to the test-bed scenario in Sec. 4.2.2. After changing the clients’ request
rates the system seems to be starting to get stable but we assume that behaviour is still
random due to the strategy-less approach of the algorithm. The avg. resp. times of all the
data-centres are in the same level at the beginning of set B, which makes response times
keep in almost the similar level as the difference between the concurrency rate from clients
is very small and almost indistinguishable for the data-centres.

Figure 4.13: Test-Bed EWMA Graph for Uniform-Site Migration (Naive) with Dynamic
Request Sets

82

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

Implementing the similar experiment with the uniform-site migration (informed), we can
evaluate the performance of this scheme in a dynamic HTTP request rates. Fig. 4.14 show-
ing the EWMA graph for this particular test scenario where the system showing emerging
behaviour in a similar way as previously when the set A session is running. The period for
converging (point in 02:38 of the Fig. 4.14) not as fast as biased and single-point migration
schemes but it is showing some sort of equilibrium in avg. resp. time of the all the connec-
ted data-centres. After changing the request rates set (set B) of the clients we starting to
notice the instability in avg. resp. time in the data-centres. This means the response times
are reacting to the sudden change of the request rates. Since the response time level are
almost similar in all the DCs in this session the system showing quicker convergence period
(around 03:23 in the graph) as it proceeds.

Figure 4.14: Test-Bed EWMA Graph for Uniform-Site Migration (Informed) with Dynamic
Request Sets

Now we evaluate the similar test-scenario with the biased migration scheme of the evolu-
tionary algorithm. We are expecting the identical results as before in the first set session of
the test-bed. We like to point it out that these tests might not look exactly the same due
to the facts that these are completely new test-bed results and the network overhead can
influence greatly while performing the experiment and gathering numerical data. In the
figure (Fig. 4.15) representing the dynamic request rate changes in the test-bed scenario
with the biased migration scheme implementation. This algorithm gave a good performance
at the test-bed experiment with single set request rates.

We are noticing the similar results in this case as well especially when it comes to stabilising
the network by balancing the avg. resp. time in all the data-centres and fast converging
period of the system. We can observe that at the second session of the test scenario,
data-centres are stabilising their response time as the migrating instances are choosing
the next destination with the probability. The graph shows that the emerging slopes are
more gradual with this migration scheme which is also expected in the experiment. The
system holds the avg. resp. times at both sessions of this particular test-bed in very stable
positions. Even after the sets are changed the system does fluctuate from its stabilised
position but quickly becomes stable again at another point after a certain period. Due to
the network/protocol overhead, this sort of behaviour is normal for any distributed web
servers. Here, we particularly investigating how the scheme is bringing the system back to
a stabilised stage by observing the network condition in a specific moment.

83

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

Figure 4.15: Test-Bed EWMA Graph for Biased Migration with Dynamic Request Sets

Figure 4.16: Test-Bed EWMA Graph for Single-Point Migration with Dynamic Request
Sets

Finally, we have executed the experiment with single-point migration script with dynamic
client request sets. Fig. 4.16 giving us the graph with EWMA plots with the collected
results. The graphs show us how our migrating instances are handling the sudden change
of the number of clients (or incoming HTTP requests) dynamically in the midpoint of the
test-bed. The avg. resp. time is considerably adjusting itself as the same way in the second
session with set B as it was in the first session with set A of the Tab. 4.4. The system has
some fluctuations in the response time but it shows a good emergence behaviour during the
test period. Avg. resp. time of all the data-centres seems to be continuously stabilising
and the convergence period of the system are same as fast as the tests with a single set
of client request rate. Since we do not have any probability in this scheme as we had for
biased migration, the migrating instances move more frequently in this test. We can notice
the slope representing avg. resp. times are showing slightly more fluctuations than biased

84

Results and Analysis NSA5930 : Master’s Thesis in Spring 2018

migration graph (Fig. 4.15) with dynamic client request sets.

In the next chapter, we give a comparison of our simulation and real-life experiment results
in details. The thorough discussion will be conducted to give our readers a conclusive
understanding of the proposed algorithms’ performance in the exhaustive test scenarios.

85

Discussion NSA5930 : Master’s Thesis in Spring 2018

Chapter 5

Discussion

Every small factor of an individual experimental result can give a better overview of a
bigger outline. In the chapter, we discuss the organised experiments in controlled and real-
life (unregulated) scenarios that we have produced in the previous chapter. Our proposed
algorithms were implemented and executed in multiple different scenarios which give are
exceptional results from the tests. These results are then collected and projected in plots to
readers to have a better perception of the performance of the algorithms. The performance
graphs are then evaluated and compared to each other to find the best possible solution
to meet our project goal. Comparison of test results gathered from simulations and real-
life test-bed can give us a good recognition of how our algorithms perform in a controlled
theoretical environment and in the real cloud system. This is to prove the concept of
autonomous VM migration in cloud computing while maintaining a QoS of distributed
web service. The comprehensive review of our algorithms is beneficial for visualising the
accomplishment of the algorithms in various challenging events. We are comparing the
variants uniform-site (informed/naive), biased and single-point migration operation in the
test settings.

5.1 Discussion: Uniform-Site Migration (Naive)

The experimental numerical results of both in simulation and real-life are plotted to graphs
and compared thoroughly as we proceed to discuss the performance evaluation of the
uniform-site migration (informed). The algorithm has no particular strategy to reach a
goal or in our case meet the evolutionary game theory requirements. Since all the mi-
grating VMs moving to any zone/region completely randomly the system/network shows
an incompatibility to balance the avg. resp. time. between the data-centres. Random
movement of the workers in the data-centres tends to have a serious effect on converging
the network as a whole. This is projected in both simulation and real-life experiments. In
the simulation setting, the system does become stable at a point but the procedure took
a significant amount of time. We tested the same simulation several times (approximately
100 times) and collect the average of all those simulations. The result seems to be giving an
unstable system without a meaningful target. The purpose of designing this algorithm was
to test a method where no strategy is introduced to the components. The same behaviour
is noticeable in the test-bed experiment in the cloud environment where the number of
worker-instances is not appropriately distributed among the data-centres, especially those
with the highest amount of HTTP requests. The migration procedure of workers in this
test shows no collective behaviour and the network never gets converged at any point. To
consider an evolutionary game theory to succeed, it is recommended that every player/com-
ponent in the game have similar strategy without knowing the condition of other players.
This strategy should be designed to reach a goal in incrementally instead of jump to the
solution in one step. The continuous and repetition of such emerging behaviour conclude
in a system-wide steadiness and the entire system later become stable collectively. We do

87

Discussion NSA5930 : Master’s Thesis in Spring 2018

not see this behaviour in the test simulation with the naive algorithm. Neither we can ob-
serve any improvement of the scheme adaptation in the real-life situation. In the controlled
environment, the infrastructure does become stable at one point but that result is not con-
stant in every single experiment. In the other hand, test-bed scenarios never stabilise the
response times in any number of experiments. This is to prove that a evolutionary game
theory can only beneficial when a strategic approach is implemented, i.e., the components
in the setup have a specific plan. The algorithm is then later updated to apply a better
method to solve the performance issue of the proposed evolutionary game theory.

5.2 Discussion: Uniform-Site Migration (Informed)

Same as previous discussion, we compare the the results collected for the uniform-site
migration with informed properties from the simulation and test-bed settings. The graphs
created from both environments, shows us better result than the previous algorithm test.
Since, in this test the migrating instances are given a choice between data-centres those who
have worse response time than their currently allocated data-centres, the instances makes
a better decision to pick a candidate to migrate. The performance improvement of this
variant of algorithm is clearly visible in the graphs. Comparing the graphs (simulation vs
test-bed), the nodes tends to be shared or distributed among all the DCs more competently.
In the controlled test, the nodes are making a quick decision to choose the more affected
data-centres which stabilises the avg. resp. time of those affected data-centres, since the
number of back-end servers are directly involved for decreasing the response times. Similar
results can be shown in the test-bed scenarios, as the entire system converges faster when
instances can have a better decision making skill. The stabilisation of avg. resp. time in
all the data-centres (network-wide) improving the performance of the test as the objective
of game theory is met. This particular algorithm has a better accomplishment to reach
our project goal than of with naive scheme implementation. The algorithm is designed
to prove the concept of introducing a behavioural attributes in each component in the
game to approach a intelligent strategy to maintain the system’s condition. With such
property, an individual component (in our case migrating instances) can contribute towards
a better result, which is also beneficial for all other components in the same system. As we
discussed, the convergence behaviour is present in this algorithm test and it is faster than of
naive uniform-site migration tests. Especially in the test-bed scenario, the worker-instances
shows a emergence behaviour to reach the convergence level and it is persistent throughout
the rest of the investigation. We like to point out that the test-bed result is not exactly
equivalent to the controlled (simulation) result. The theoretical analysis of the algorithm in
the simulation is done in a system where no outside noise or error is introduced, wherein the
real-life experiments the web servers are bound to be affected by the network congestion,
time-out, network connectivity etc. Considering the randomness of network condition it is
interesting to see how the algorithm still manage to control the system stabilisation as one
whole connected entity and maintaining the QoS of the web servers at the same time.

5.3 Discussion: Biased Migration

The test results for biased migration tests gives us a better overview the efficiency of our
evolutionary algorithm. Not only this migration scheme take the avg. resp. time of data-
centres into account but also implies a probability based migration property which makes the
convergence take place in a very steady method. The purpose of this migration application
is to take the entire network’s condition into account while making a migrating decision.
This process makes the worker-instances take better choices to target affected data-centres.
The graph representing the simulation results gives us a good overview how quickly the
convergence in the system took place and how stable the system is throughout the rest
of the test process. This means the response times are balanced equally faster with this
migration algorithm than of other previously mentioned algorithms. The similar test results
are observed in the test-bed scenario, where all the response time in data-centres came to

88

Discussion NSA5930 : Master’s Thesis in Spring 2018

the convergence point fairly quicker than previous ones. The stabilisation of the avg. resp.
time in all the data-centres makes us confirm that biased migration scheme application in
the workers has a better strategy when it comes to not only to system work together but also
keep the equilibrium intact the whole time. Having a dynamic environment in the test-bed,
the system tends to deflect from its own position, but with an effective design, the system
can autonomously keep it balanced without any help of an external controller. Repeating
the same process constantly makes the system more aware of the current network situation
and since all the worker-instances can keep a track of last few network condition, minor
fluctuations will not make any major difference in the stability of the system. We confirm
from both the test-bed and test-simulations results that the condition of the infrastructure
shows better performance when we adopt the biased migration.

5.4 Discussion: Single-Point Migration

In this final test, we are investigating the quality of the single-point migration algorithm
on an infrastructure. Similar to the previous test, both scenarios such as simulation of such
test and real-life utilisation on test-bed in cloud system GCP have been organised. The
test results are set in graphs where we can analyse the collected data from the experiments.
As we can inspect in the simulation the system does become stable quick as the biased
migration but it had a hard time keeping the network stable. The avg. resp. time of the
data-centres shows a small number of fluctuations as it proceeds which is also noticeable in
the test-bed experiment. The convergence point where all the response times are becoming
at the same level happened fairly quickly. This has the similar pattern as biased migration
method. But the system tends to become unstable in cloud system as it continues. The
algorithm only considers the data-centres with the highest amount of avg. resp. time as
the migration candidate which might not take into account as other nearly affected data-
centres with high response time. This makes the algorithm blind-sighted as it proceeds to
pick the candidates. The effect of single-point migration algorithm’s is still perceived in the
graphs, as it has the better efficiency to keep the system stable during the test-bench but
the result is not as perfect as the instance deployment with biased migration. The test-bed
still managed to keep the QoS of the web server in its best quality during the test and cloud
infrastructure gives a moderate and settled performance with this variant of the algorithm.

Table 5.1: Algorithms Performance Chart in Test-Bed Scenarios

Algorithms Uniform-Site
(Naive)

Uniform-Site
(Informed) Biased Single-Point

Complexity Simple Slightly
Moderate Hard Moderate

Test-Simulation
Performance

Convergence
Period Slow Fairly

Quick Fast Fast

Resp. Time
Stability

Not Very
Stable

Fairly
Stable

Very
Stable

Fairly
Stable

Overall
Performance Good Good Best Better

Test-Bed
Performance

Convergence
Period

No
Convergence

Fairly
Quick Fast Fast

Resp. Time
Stability

Not Very
Stable

Fairly
Stable

Very
Stable

Fairly
Stable

Overall
Performance Weak Good Best Better

To give a complete picture of test performance of the different variants of the algorithm
we have created a table (Tab. 4.3) which will give our readers a brief overview. We
categorised the performance scales in different levels and commented on the achievement of
the schemes by implementing them in cloud test-bed system and the simulation scenarios.

89

Discussion NSA5930 : Master’s Thesis in Spring 2018

The classification of experimental results are marked as levels gained by all the variants
in their accomplishment level on how much they influenced the network is controlled and
real-life setup in terms of complexity level of designing and implementing the algorithms
in test scenarios, how well-balanced the response times are in the entire network, how fast
the system converges and their overall performance.

By ranking the effectiveness of the algorithm for worker-instances to choose a data-centre
(which needs the most back-end servers) to pick as migrating destination and capacity of
making the system converge in the fastest manner from any given condition in the network,
we consider biased migration algorithm is the finest variant of the proposed evolutionary
algorithm. Not only this algorithm makes the system (cloud infrastructure) stabilises faster
but also it can keep that feature for longest (or in our case rest of the test procedure). Next
to the performance criteria, with single-point algorithm system also shows an outstanding
result. The algorithm proves to stabilise the cloud infrastructure at a similar pace as biased
migration test but fails to maintain the position as good. It still shows gives us a good result
when it comes to reaching the goal to prove the concept that an autonomous system can be
as capable as a system with centralised control feature. The naive uniform-site migration
fails to converge the system for the lack of any strategy in the algorithm. We overcome this
deficiency by improving the emerging behaviour of migrating nodes/instances by proposing
the informed uniform-site migration with additional characteristic/feature such as choosing
candidate data-centre which is more distressed due to higher avg. resp. time. All the
variants of algorithm show that an autonomous system can be adapted in cloud services in
order to cut back on high maintenance/service of the web servers and cost of instances by
distributing idle VMs in a more productive way using evolutionary game theory.

90

Conclusions and Future Work NSA5930 : Master’s Thesis in Spring 2018

Chapter 6

Conclusions and Future Work

In this emerging world of cloud computing with various web services, designing an autonom-
ous and self-management characteristics for a system with services is a complex method.
Not only a developer needs to construct the architecture of the design but also has to im-
plement an appropriate algorithm that can co-operate with that system. The functionality
of a VM/instance in a cloud framework is very much depended on connectivity, network
stability, service discovery, response time, QoS and many other features of the communic-
ating network. The study of web service developing is continually growing, as these services
have the advantage of easy deployment for a number of different applications. A VM with
features such as autonomy, self-organising property, network condition awareness and most
of all the self-capability of independently migrating to any data-centre (that is in need of
more VMs), sharing idle web servers between data-centres and to reduce costs of instances
in a cloud system plays a vital role in the cloud service infrastructure. By using an adequate
strategy and well-fitted algorithm VMs can take a better decision and change the network
condition without any help of additional controller system.

6.1 Conclusion

We studied the concept of developing an algorithm by adopting evolutionary game theory
and embed the design to the VMs to introduce independent behaviour of migrating with
an adequate approach. Our project goal is to implement a suitable algorithm which can
balance the avg. resp. time in a cloud system by reducing scaling of additional VMs
and utilising the idle VMs by sharing them among the data-centres. Our evolutionary
algorithm has a better perspective of the entire network condition and takes a decision
individually and in a calculative manner to migrate to another affected zone if the avg.
resp. times get higher due to high HTTP user requests towards the web services. We
designed this algorithm to increase the better utilisation of non-operative or idle VMs in a
better manner and enforce a collective behaviour in them. The proposed algorithm adapts
the evolutionary game theory to achieve such characteristics in the VMs which can provide
us with a cooperative, self-reliable and advanced inter-network relationship in the cloud.
The algorithm is then abstracted into four distinctive variants and inspected in extensive
evaluation processes. The results are then compared to each other and we get an in-
depth outcome of the attainment of our proposed algorithms. Out of four distinct variants
of algorithms, we have concluded that biased migration scheme performs the best in both
controlled and realistic environment. Our proposed evolutionary algorithm shows that using
this algorithm the system can reach an equilibrium as every single associated component in
the same network can contribute towards a specific goal to reach a convergence level in that
system. Implementing these algorithms with evolutionary game theory in the VMs, we can
make them more autonomous and completely independent of any centralised system while
maintaining the QoS of distributed web services.

91

Conclusions and Future Work NSA5930 : Master’s Thesis in Spring 2018

6.2 Contribution

The following gives a quick overview of our contribution to this masters thesis project:

• We proposed an evolutionary algorithm to implement in a VM to introduce autonom-
ous behaviour in the system. This algorithm can help VM analyse network condition
of all the regions in the infrastructure and migrate to affected ones to equalise the
response time.

• We implemented four variants of algorithms to improve the strategic decision to mi-
grate and tackle the system-wide network stability.

• These variants are then implemented in simulations to asses the efficiency of the
algorithms. We tested one of the variants in the different topological scenario and
observe the performance.

• The variants are also implemented in numerous test-bed scenarios in the cloud in-
frastructure to produce real-life scenarios and gathered numerical data evaluate the
success of the designed principle.

• Finally, we summarise by extracting the data collected and put them in the graph
models. We compare the graphs among simulation and real-life to give our readers
of this thesis a detailed perception of proposed evolutionary algorithm evaluation. In
addition, we evaluate the performance of the entire network along with the migration
schemes implementation on the VMs, which gives us a thorough overview of our
working algorithm’s performance in any given condition.

6.3 Future Work

We include several potential work that can be investigated/developed in the future. These
potential work are mentioned below:

• A better alternative can be implemented to activate the migration schemes in the
worker-instances while testing, instead of using only a simple random wake-up and
execute features.

• More comprehensive review can be conducted with high intensive exhaustive test-
scenarios and a complex infrastructure to evaluate the algorithms’ performance.

• A new algorithm can be designed to observe and predict the network condition in
the preliminary stage and initiate the intermediate stage to make a better migration
choices in advance.

• A test with each data-centre equipped with different variants of the algorithm to
observe how the system setup performs can be an interesting experiment.

92

Bibliography NSA5930 : Master’s Thesis in Spring 2018

Bibliography

[1] R. Jain. "The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling". John Wiley and
Sons, Inc., New York, Apr. 1991.

[2] M. D. Neto (IBM). "A brief history of cloud computing". [online] Available at:
https://www.ibm.com/blogs/cloud-computing/2014/03/
a-brief-history-of-cloud-computing-3/.

[3] Techopedia. "Virtual Machine Migration (VM Migration)". [online] Available at:
https://www.techopedia.com/definition/15033/
virtual-machine-migration-vm-migration.

[4] Pluralsight. "What is Hypervisor?". [online] Available at:
https://www.pluralsight.com/blog/it-ops/what-is-hypervisor.

[5] S. Meier. "IBM Systems Virtualization: Servers, Storage, and Software".
International Business Machines Corporation, pages (2, 15–20), Apr. 2008.

[6] P. Viswanathan (Lifewire). "Cloud Computing and Is it Really All That Beneficial?".
[online] Available at:
https://www.lifewire.com/cloud-computing-explained-2373125.

[7] Google. "Setting Up HTTP(S) Load Balancing". [online] Available:
https://cloud.google.com/compute/docs/load-balancing/http/.

[8] Python Software Foundation. "Python". [online] Available: at
https://www.python.org.

[9] Mitchell Anicas. "An Introduction to HAProxy and Load Balancing Concepts".
[online] Available at: https://www.digitalocean.com/community/tutorials/
an-introduction-to-haproxy-and-load-balancing-concepts.

[10] J. Yue, B. Yang, C. Chen, and X. Guan. "Chasing the Most Popular Video: An
Evolutionary Video Clip Selection". IEEE Communications Letters, pages (781–784),
May. 2014.

[11] J. Zhang, F. Dong, D. Shel, and J. Luo. "Game Theory Based Dynamic Resource
Allocation for Hybrid Environment with Cloud and Big Data Application". IEEE
International Conference on Systems, Man, and Cybernetics, Oct. 2014.

[12] D. Niyato and E. Hossain. "Dynamics of Network Selection in Heterogeneous
Wireless Networks: An Evolutionary Game Approach". IEEE Transactions on
Vehicular Technology, 58(4):(2008–2017), May. 2009.

[13] J. Zhang, W. Xia, Z. Cheng, Q. Zou, B. Huang, F. Shen, F. Yan, and L. Shen. "An
Evolutionary Game for Joint Wireless and Cloud Resource Allocation in Mobile Edge
Computing". 2017 9th International Conference on Wireless Communications and
Signal Processing (WCSP), Dec. 2017.

93

https://www.ibm.com/blogs/cloud-computing/2014/03/a-brief-history-of-cloud-computing-3/
https://www.ibm.com/blogs/cloud-computing/2014/03/a-brief-history-of-cloud-computing-3/
https://www.techopedia.com/definition/15033/virtual-machine-migration-vm-migration
https://www.techopedia.com/definition/15033/virtual-machine-migration-vm-migration
https://www.pluralsight.com/blog/it-ops/what-is-hypervisor
https://www.lifewire.com/cloud-computing-explained-2373125
https://cloud.google.com/compute/docs/load-balancing/http/
https://www.python.org
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts

Bibliography NSA5930 : Master’s Thesis in Spring 2018

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. "Live Migration of Virtual Machines". USENIX Association, 2nd
Symposium on Networked Systems Design & Implementation, pages (273–286), May.
2005.

[15] M. Duggan, J. Duggan, E. Howley, and E. Barrett. "An Autonomous Network Aware
VM Migration Strategy in Cloud Data Centres (ICCAC)". 2016 International
Conference on Cloud and Autonomic Computing, Dec. 2016.

[16] H. W. Choi, A. Sohn, H. Kwak, and K. Chung. "Enabling Scalable Cloud
Infrastructure using Autonomous VM Migration". 2012 IEEE 14th International
Conference on International Conference on High Performance Computing and
Communications, Oct. 2012.

[17] S. B. Melhem, A. Agarwal, N. Goel, and M. Zaman. "Markov Prediction Model for
Host Load Detection and VM Placement in Live Migration". IEEE Access, 6:(7190 –
7205), Dec. 2017.

[18] S. Nanda and T. J. Hacker. "TAG: Traffic-Aware Global Live Migration to Enhance
User Experience of Cloud Applications". 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Dec. 2017.

[19] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya.
"Cloudsimsdn: Modeling and Simulation of Software-Defined Cloud Data Centers".
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid, page (475–484), Jul. 2015.

[20] V. Kherbache, É. Madelaine, and F. Hermenier. "Scheduling Live Migration of
Virtual Machines". IEEE Transactions on Cloud Computing, 99:(1–1), Sep. 2017.

[21] F. Rodríguez-Haro, F. Freitag, and L. Navarro. "Autonomous Management in
Virtual-machine-based Resource Providers". Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, Oct. 2008.

[22] S. E. Benbrahim, A. Quintero, and M. Bellaiche. "New Distributed Approach for an
Autonomous Dynamic Management of Interdependent Virtual Machines". 2014 8th
Asia Modelling Symposium (AMS), pages (193–196), Sep. 2014.

[23] J. Rao, X. Bu, C.Z. Xu, and K. Wang. "A Distributed Self-Learning Approach for
Elastic Provisioning of Virtualized Cloud Resources". 2011 IEEE 19th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Aug. 2011.

[24] P. T. Endo, M. S. Batista, G. E. Gonçalves, M. Rodrigues, D. Sadok, J. Kelner,
A. Sefidcon, and F. Wuhib. "Self-organizing strategies for resource management in
Cloud Computing: State-of-the-art and challenges". 2nd IEEE Latin American
Conference on Cloud Computing and Communications (LatinCloud), Jun. 2014.

[25] D.J.T. Sumpter. "The Principles of Collective Animal Behaviour". Philosophical
Transactions of the Royal Society B: Biological Sciences, Feb. 2018.

[26] D.G. Harper. "Competitive Foraging in Mallards: ’Ideal Free’ Ducks". Anim. Behav.,
30:(575–585), 1982.

[27] J. M. Smith and G. R. Price. "The Logic of Animal Conflict". Nature Publishing
Group SN, 246:(15–18), Nov. 1973.

[28] T. L. Vincent. "Evolutionary Game Theory, Natural Selection, and Darwinian
Dynamics". Cambridge University Press, pages (72–87), Aug. 2009.

[29] R. L. Freeman. "Fundamentals of Telecommunications". John Wiley & Sons, Inc.,
page (57), Nov. 2005.

[30] L. Kleinrock. "Theory: Queueing Systems". Wiley-Interscience, 1:(103), Nov. 1975.

94

Bibliography NSA5930 : Master’s Thesis in Spring 2018

[31] J. D. C. Little and S. C. Graves. "Little’s Law". D. Chhajed, T.J. Lowe (eds.)
Building Institution: Insights from Basic Operations Management Models and
Principles, 115:(81–100), 2008.

[32] Tenable. "Set up a NAT Gateway". [online] Available at: https://docs.tenable.
com/pvs/deployment/Content/GoogleCloudInstructionsNatGateway.htm.

95

https://docs.tenable.com/pvs/deployment/Content/GoogleCloudInstructionsNatGateway.htm
https://docs.tenable.com/pvs/deployment/Content/GoogleCloudInstructionsNatGateway.htm

Appendices

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix A

Test-Simulation Scripts

A.1 naive-uniform-site-migration.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7
8 # Script Simulation: Uniform (Naive)
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha =1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor
31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)

/ (1 - self.utilization))))
32
33 def avg_response_time(self):
34 """

99

Appendices NSA5930 : Master’s Thesis in Spring 2018

35 1. Probability when a packet comes , it needs to queue
in the buffer.

36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C
function => Prob. Queue

37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39
40 3. Return the average time of packets spending in the

system (in service and in the queue).
41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /

service)
42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id
47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 def iteration(num ,n_zone):
54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]
57 zones ={}
58 resp_times ={}
59 n_vm_per_zone = 10
60 n_vm = n_zone * n_vm_per_zone
61 for zone in range(0,n_zone):
62 zones[’zone_ ’+str(zone +1)] = 0
63 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
64 for index , key in enumerate(zones):
65 zones[key] = int(n_vm / n_zone)
66 for iteration in range(n_iterations):
67 if iteration % 4000 == 0:
68 num += 1
69 if num > n_zone - 1:
70 num = 0
71 pass
72 for index , key in enumerate(zones):
73 resp_times[’resp_time_ ’+key] = function(zones[key

],request_id[key][num])
74 average = sum(resp_times.values ()) / len(resp_times)
75 for key , val in resp_times.items():
76 r = random.random ()
77 if resp_times[key] < average:
78 prob = alpha * abs((average - resp_times[key])

/ average)
79 _a = resp_times[key]
80 _temp = []
81 for a, b in resp_times.items ():
82 _temp.append(a)
83 choice = random.choice(_temp)
84 _get = choice.replace("resp_time_","")

100

Appendices NSA5930 : Master’s Thesis in Spring 2018

85 move = key.replace("resp_time_","")
86 get = _get
87 if r < prob:
88 print(move ,’to’,get)
89 for index , key in enumerate(zones):
90 if zones[move] > 1:
91 zones[move] = zones[move] - 1
92 zones[get] = zones[get] + 1
93 break
94
95 if iteration % 10 == 0:
96 os.system(’clear’)
97 for key , val in sorted(zones.items()):
98 print (’VMs in’,key , ’:’, val)
99 for key , val in sorted(resp_times.items()):

100 print (key ,’:’,val)
101 x = key.replace("resp_time_","")
102 if x == ’zone_1 ’:
103 zone_1.append(val)
104 if x == ’zone_2 ’:
105 zone_2.append(val)
106 if x == ’zone_3 ’:
107 zone_3.append(val)
108 print(’Iteration:’, iteration , ’/’, n_iterations)
109 print(’-----------------------\n’)
110 pass
111 return zone_1 , zone_2 , zone_3
112
113 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

):
114 for i in range(1,times +1):
115 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] = iteration(num ,n_zone)
116 return zone_avg_1 , zone_avg_2 , zone_avg_3
117 n_iterations =12000
118 n_zone =3
119 zone_1 =[]
120 zone_2 =[]
121 zone_3 =[]
122 num = 0
123 request_id = {’zone_1 ’: [60,70,35], ’zone_2 ’: [70,35,60], ’

zone_3 ’: [35 ,60 ,70]}
124 zone_avg_1 ={}
125 zone_avg_2 ={}
126 zone_avg_3 ={}
127 times =100
128 x,y,z=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3)
129 _x=[sum(t)/times for t in zip(*x.values ())]
130 _y=[sum(t)/times for t in zip(*y.values ())]
131 _z=[sum(t)/times for t in zip(*z.values ())]
132 plt.figure ()
133 plt.title(’Test -Simulation: Response Times - Uniform -Site

Migration (Naive)’)
134 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
135 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
136 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
137 plt.legend ()

101

Appendices NSA5930 : Master’s Thesis in Spring 2018

138 plt.xlabel(’Number of Iterations ’)
139 plt.ylabel(’Average Response Times (in secs)’)
140 plt.xlim ((0,(n_iterations /10)))
141 plt.tight_layout ()
142 plt.savefig(’./plots/plot_uniform_site_naive.png’)
143 plt.close ()

A.2 informed-uniform-site-migration.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7
8 # Script Simulation: Uniform (Informed)
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha =1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor
31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)

/ (1 - self.utilization))))
32
33 def avg_response_time(self):
34 """
35 1. Probability when a packet comes , it needs to queue

in the buffer.
36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C

function => Prob. Queue
37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39

102

Appendices NSA5930 : Master’s Thesis in Spring 2018

40 3. Return the average time of packets spending in the
system (in service and in the queue).

41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /
service)

42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id
47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 def iteration(num ,n_zone):
54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]
57 zones ={}
58 resp_times ={}
59 n_vm_per_zone = 10
60 n_vm = n_zone * n_vm_per_zone
61 for zone in range(0,n_zone):
62 zones[’zone_’+str(zone +1)] = 0
63 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
64 for index , key in enumerate(zones):
65 zones[key] = int(n_vm / n_zone)
66 for iteration in range(n_iterations):
67 if iteration % 4000 == 0:
68 num += 1
69 if num > n_zone - 1:
70 num = 0
71 pass
72 for index , key in enumerate(zones):
73 resp_times[’resp_time_ ’+key] = function(zones[key

],request_id[key][num])
74 average = sum(resp_times.values ()) / len(resp_times)
75 for key , val in resp_times.items():
76 r = random.random ()
77 if resp_times[key] < average:
78 prob = alpha * abs((average - resp_times[key])

/ average)
79 _a = resp_times[key]
80 _temp = []
81 for a, b in resp_times.items ():
82 if b > _a:
83 _temp.append(a)
84 _get=""
85 if len(_temp) == 1:
86 _get = _temp [0]. replace("resp_time_","")
87 elif len(_temp) == 2:
88 choice = random.choice(_temp)
89 _get = choice.replace("resp_time_","")
90 move = key.replace("resp_time_","")
91 get = _get
92 if r < prob:

103

Appendices NSA5930 : Master’s Thesis in Spring 2018

93 print(move ,’to’,get)
94 for index , key in enumerate(zones):
95 if zones[move] > 1:
96 zones[move] = zones[move] - 1
97 zones[get] = zones[get] + 1
98 break
99

100 if iteration % 10 == 0:
101 os.system(’clear’)
102 for key , val in sorted(zones.items()):
103 print (’VMs in’,key , ’:’, val)
104 for key , val in sorted(resp_times.items()):
105 print (key ,’:’,val)
106 x = key.replace("resp_time_","")
107 if x == ’zone_1 ’:
108 zone_1.append(val)
109 if x == ’zone_2 ’:
110 zone_2.append(val)
111 if x == ’zone_3 ’:
112 zone_3.append(val)
113 print(’Iteration:’, iteration , ’/’, n_iterations)
114 print(’-----------------------\n’)
115 pass
116 return zone_1 , zone_2 , zone_3
117
118 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

):
119 for i in range(1,times +1):
120 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] = iteration(num ,n_zone)
121 return zone_avg_1 , zone_avg_2 , zone_avg_3
122 n_iterations =12000
123 n_zone =3
124 zone_1 =[]
125 zone_2 =[]
126 zone_3 =[]
127 num = 0
128 request_id = {’zone_1 ’: [60,70,35], ’zone_2 ’: [70,35,60], ’

zone_3 ’: [35 ,60 ,70]}
129 zone_avg_1 ={}
130 zone_avg_2 ={}
131 zone_avg_3 ={}
132 times =100
133 x,y,z=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3)
134 _x=[sum(t)/times for t in zip(*x.values ())]
135 _y=[sum(t)/times for t in zip(*y.values ())]
136 _z=[sum(t)/times for t in zip(*z.values ())]
137 plt.figure ()
138 plt.title(’Test -Simulation: Response Times - Uniform -Site

Migration (Informed)’)
139 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
140 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
141 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
142 plt.legend ()
143 plt.xlabel(’Number of Iterations ’)
144 plt.ylabel(’Average Response Times (in secs)’)
145 plt.xlim ((0,(n_iterations /10)))

104

Appendices NSA5930 : Master’s Thesis in Spring 2018

146 plt.tight_layout ()
147 plt.savefig(’./plots/plot_uniform_site_informed.png’)
148 plt.close ()

A.3 biased-migration.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7
8 # Script Simulation: Biased
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha =1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor
31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)

/ (1 - self.utilization))))
32
33 def avg_response_time(self):
34 """
35 1. Probability when a packet comes , it needs to queue

in the buffer.
36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C

function => Prob. Queue
37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39
40 3. Return the average time of packets spending in the

system (in service and in the queue).
41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /

service)

105

Appendices NSA5930 : Master’s Thesis in Spring 2018

42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id
47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 def iteration(num ,n_zone):
54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]
57 zones ={}
58 resp_times ={}
59 n_vm_per_zone = 10
60 n_vm = n_zone * n_vm_per_zone
61 for zone in range(0,n_zone):
62 zones[’zone_ ’+str(zone +1)] = 0
63 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
64 for index , key in enumerate(zones):
65 zones[key] = int(n_vm / n_zone)
66 for iteration in range(n_iterations):
67 if iteration % 4000 == 0:
68 num += 1
69 if num > n_zone - 1:
70 num = 0
71 pass
72 for index , key in enumerate(zones):
73 resp_times[’resp_time_ ’+key] = function(zones[key

],request_id[key][num])
74 average = sum(resp_times.values ()) / len(resp_times)
75 for key , val in resp_times.items():
76 r = random.random ()
77 if resp_times[key] < average:
78 prob_own = abs((average - resp_times[key]) /

average)
79 _a = str(key)
80 _Dict ={}
81 for key , val in sorted(resp_times.items()):
82 if str(_a) not in key:
83 _Dict[key]= val
84 _Dict_other ={}
85 for key , val in _Dict.items ():
86 _Dict_other["prob_"+key] = alpha *

abs((average - resp_times[key
]) / average)

87 move = _a.replace("resp_time_","")
88 get = max(_Dict_other , key=_Dict_other.get).

replace("prob_resp_time_", "")
89 if r < prob_own:
90 if zones[move] > 1:
91 zones[move] = zones[move] - 1
92 zones[get] = zones[get] + 1
93

106

Appendices NSA5930 : Master’s Thesis in Spring 2018

94 if iteration % 10 == 0:
95 os.system(’clear’)
96 for key , val in sorted(zones.items()):
97 print (’VMs in’,key , ’:’, val)
98 for key , val in sorted(resp_times.items()):
99 print (key ,’:’,val)

100 x = key.replace("resp_time_","")
101 if x == ’zone_1 ’:
102 zone_1.append(val)
103 if x == ’zone_2 ’:
104 zone_2.append(val)
105 if x == ’zone_3 ’:
106 zone_3.append(val)
107 print(’Iteration:’, iteration , ’/’, n_iterations)
108 print(’-----------------------\n’)
109 pass
110 return zone_1 , zone_2 , zone_3
111
112 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

):
113 for i in range(1,times +1):
114 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] = iteration(num ,n_zone)
115 return zone_avg_1 , zone_avg_2 , zone_avg_3
116
117 n_iterations =12000
118 n_zone =3
119 zone_1 =[]
120 zone_2 =[]
121 zone_3 =[]
122 num = 0
123 request_id = {’zone_1 ’: [60,70,35], ’zone_2 ’: [70,35,60], ’

zone_3 ’: [35 ,60 ,70]}
124 zone_avg_1 ={}
125 zone_avg_2 ={}
126 zone_avg_3 ={}
127 times =100
128 x,y,z=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3)
129 _x=[sum(t)/times for t in zip(*x.values ())]
130 _y=[sum(t)/times for t in zip(*y.values ())]
131 _z=[sum(t)/times for t in zip(*z.values ())]
132 plt.figure ()
133 plt.title(’Test -Simulation: Response Times - Biased Migration ’

)
134 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
135 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
136 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
137 plt.legend ()
138 plt.xlabel(’Number of Iterations ’)
139 plt.ylabel(’Average Response Times (in secs)’)
140 plt.xlim ((0,(n_iterations /10)))
141 plt.tight_layout ()
142 plt.savefig(’./plots/plot_biased.png’)
143 plt.close ()

107

Appendices NSA5930 : Master’s Thesis in Spring 2018

A.4 single-point-migration.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7
8 # Script Simulation: Single Point
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha = 1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor
31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)

/ (1 - self.utilization))))
32
33 def avg_response_time(self):
34 """
35 1. Probability when a packet comes , it needs to queue

in the buffer.
36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C

function => Prob. Queue
37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39
40 3. Return the average time of packets spending in the

system (in service and in the queue).
41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /

service)
42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id

108

Appendices NSA5930 : Master’s Thesis in Spring 2018

47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 def iteration(num ,n_zone):
54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]
57 zones ={}
58 resp_times ={}
59 n_vm_per_zone = 10
60 n_vm = n_zone * n_vm_per_zone
61 for zone in range(0,n_zone):
62 zones[’zone_’+str(zone +1)] = 0
63 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
64 for index , key in enumerate(zones):
65 zones[key] = int(n_vm / n_zone)
66 for iteration in range(n_iterations):
67 if iteration % 6000 == 0:
68 num += 1
69 if num > n_zone - 1:
70 num = 0
71 pass
72 for index , key in enumerate(zones):
73 resp_times[’resp_time_ ’+key] = function(zones[key

],request_id[key][num])
74 average = sum(resp_times.values ()) / len(resp_times)
75 for key , val in resp_times.items():
76 r = random.random ()
77 if resp_times[key] < average:
78 _a = str(key)
79 _Dict ={}
80 for key , val in sorted(resp_times.items()):
81 if str(_a) not in key:
82 _Dict[key]= val
83 prob = alpha * abs((average - resp_times[key])

/ average)
84 move = _a.replace("resp_time_","")
85 get = max(_Dict , key=_Dict.get).replace("

resp_time_", "")
86 if r < prob:
87 if zones[move] > 1:
88 zones[move] = zones[move] - 1
89 zones[get] = zones[get] + 1
90
91 if iteration % 10 == 0:
92 os.system(’clear’)
93 for key , val in sorted(zones.items()):
94 print (’VMs in’,key , ’:’, val)
95 for key , val in sorted(resp_times.items()):
96 print (key ,’:’,val)
97 x = key.replace("resp_time_","")
98 if x == ’zone_1 ’:
99 zone_1.append(val)

100 if x == ’zone_2 ’:
101 zone_2.append(val)

109

Appendices NSA5930 : Master’s Thesis in Spring 2018

102 if x == ’zone_3 ’:
103 zone_3.append(val)
104 print(’Iteration:’, iteration , ’/’, n_iterations)
105 print(’-----------------------\n’)
106 pass
107 return zone_1 , zone_2 , zone_3
108
109 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

):
110 for i in range(1,times +1):
111 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] = iteration(num ,n_zone)
112 return zone_avg_1 , zone_avg_2 , zone_avg_3
113 n_iterations =18000
114 n_zone =3
115 zone_1 =[]
116 zone_2 =[]
117 zone_3 =[]
118 num = 0
119 request_id = {’zone_1 ’: [60,70,35], ’zone_2 ’: [70,35,60], ’

zone_3 ’: [35 ,60 ,70]}
120 zone_avg_1 ={}
121 zone_avg_2 ={}
122 zone_avg_3 ={}
123 times =100
124 x,y,z=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3)
125 _x=[sum(t)/times for t in zip(*x.values ())]
126 _y=[sum(t)/times for t in zip(*y.values ())]
127 _z=[sum(t)/times for t in zip(*z.values ())]
128 plt.figure ()
129 plt.title(’Test -Simulation: Response Times - Single -Point

Migration ’)
130 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
131 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
132 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
133 plt.legend ()
134 plt.xlabel(’Number of Iterations ’)
135 plt.ylabel(’Average Response Times (in secs)’)
136 plt.xlim ((0,(n_iterations /10)))
137 plt.tight_layout ()
138 plt.savefig(’./plots/plot_single_point.png’)
139 plt.close ()

A.5 peer-to-peer-connection.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7

110

Appendices NSA5930 : Master’s Thesis in Spring 2018

8 # Script Simulation: Peer -to-Peer
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha =1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor
31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)

/ (1 - self.utilization))))
32
33 def avg_response_time(self):
34 """
35 1. Probability when a packet comes , it needs to queue

in the buffer.
36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C

function => Prob. Queue
37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39
40 3. Return the average time of packets spending in the

system (in service and in the queue).
41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /

service)
42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id
47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 _groups = {’group_1 ’ : [’zone_1 ’, ’zone_2 ’,’zone_3 ’], ’group_2

’ : [’zone_4 ’, ’zone_5 ’,’zone_6 ’], ’group_3 ’: [’zone_3 ’, ’
zone_4 ’]}

54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]

111

Appendices NSA5930 : Master’s Thesis in Spring 2018

57 zone_4 =[]
58 zone_5 =[]
59 zone_6 =[]
60 zones ={}
61 resp_times ={}
62
63 def groups(num ,group ,zones ,resp_times):
64 _temp ={}
65 for i in _groups[group]:
66 if str(’resp_time_ ’+i) in resp_times.keys():
67 _temp[’resp_time_ ’+i] = function(zones[i],

request_id[i][num])
68 resp_times[’resp_time_ ’+i] = function(zones[i

], request_id[i][num])
69 average = sum(_temp.values ()) / len(_temp)
70 for key , val in _temp.items ():
71 r = random.random ()
72 if _temp[key] < average:
73 prob = alpha * abs((average - _temp[key]) /

average)
74 _a = _temp[key]
75 _x_temp = []
76 for a,b in _temp.items ():
77 if b > _a:
78 _x_temp.append(a)
79 move = key.replace("resp_time_", "")
80 get = random.choice(_x_temp).replace("

resp_time_","")
81 if r < prob:
82 for index , key in enumerate(zones):
83 if zones[move] > 1:
84 zones[move] = zones[move] - 1
85 zones[get] = zones[get] + 1
86 break
87
88 def iteration(num ,n_zone):
89 zone_1 =[]
90 zone_2 =[]
91 zone_3 =[]
92 zone_4 =[]
93 zone_5 =[]
94 zone_6 =[]
95 zones ={}
96 resp_times ={}
97 n_vm_per_zone = 10
98 n_vm = n_zone * n_vm_per_zone
99 for zone in range(0,n_zone):

100 zones[’zone_ ’+str(zone +1)] = 0
101 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
102 for index , key in enumerate(zones):
103 zones[key] = int(n_vm / n_zone)
104 for iteration in range(n_iterations):
105 if iteration % 60000 == 0:
106 num += 1
107 if num > n_zone - 1:
108 num = 0
109 pass
110 if iteration % 7 == 0:

112

Appendices NSA5930 : Master’s Thesis in Spring 2018

111 groups(num ,’group_1 ’,zones ,resp_times)
112 if iteration % 7 == 0:
113 groups(num ,’group_2 ’,zones ,resp_times)
114 if iteration % 7 == 0:
115 groups(num ,’group_3 ’,zones ,resp_times)
116
117 if iteration % 100 == 0:
118 os.system(’clear’)
119 for key , val in sorted(zones.items()):
120 print (’VMs in’,key , ’:’, val)
121 for key , val in sorted(resp_times.items()):
122 print (key ,’:’,val)
123 x = key.replace("resp_time_","")
124 if x == ’zone_1 ’:
125 zone_1.append(val)
126 if x == ’zone_2 ’:
127 zone_2.append(val)
128 if x == ’zone_3 ’:
129 zone_3.append(val)
130 if x == ’zone_4 ’:
131 zone_4.append(val)
132 if x == ’zone_5 ’:
133 zone_5.append(val)
134 if x == ’zone_6 ’:
135 zone_6.append(val)
136 print(’Request ID Set:’,num)
137 print(’Iteration:’, iteration , ’/’, n_iterations)
138 print(’-----------------------\n’)
139 pass
140 return zone_1 , zone_2 , zone_3 , zone_4 , zone_5 , zone_6
141
142 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

,zone_avg_4 ,zone_avg_5 ,zone_avg_6):
143 for i in range(1,times +1):
144 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] , zone_avg_4[str(i)], zone_avg_5[str(i)],
zone_avg_6[str(i)]= iteration(num ,n_zone)

145 return zone_avg_1 , zone_avg_2 , zone_avg_3 , zone_avg_4 ,
zone_avg_5 , zone_avg_6

146 n_iterations =180000
147 n_zone =6
148 num = 0
149 request_id = {’zone_1 ’: [60,70,30,35,40,50], ’zone_2 ’:

[70,30,35,40,50,60], ’zone_3 ’: [30,35,40,50,60,70], ’zone_4
’: [35,40,50,60,70,30], ’zone_5 ’: [40,50,60,70,30,35], ’
zone_6 ’: [50 ,60 ,70 ,30 ,35 ,40]}

150 zone_avg_1 ={}
151 zone_avg_2 ={}
152 zone_avg_3 ={}
153 zone_avg_4 ={}
154 zone_avg_5 ={}
155 zone_avg_6 ={}
156 times =100
157 x,y,z,u,v,w=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3 ,zone_avg_4 ,zone_avg_5 ,zone_avg_6)
158 _x=[sum(t)/times for t in zip(*x.values ())]
159 _y=[sum(t)/times for t in zip(*y.values ())]
160 _z=[sum(t)/times for t in zip(*z.values ())]

113

Appendices NSA5930 : Master’s Thesis in Spring 2018

161 _u=[sum(t)/times for t in zip(*u.values ())]
162 _v=[sum(t)/times for t in zip(*v.values ())]
163 _w=[sum(t)/times for t in zip(*w.values ())]
164 plt.figure ()
165 plt.title(’Test -Simulation: Response Times - Using Peer -to -

Peer Connections ’)
166 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
167 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
168 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
169 plt.plot(_u, label=’Zone 4’, linestyle=’--’, linewidth =1.2)
170 plt.plot(_v, label=’Zone 5’, linestyle=’--’, linewidth =1.2)
171 plt.plot(_w, label=’Zone 6’, linestyle=’--’, linewidth =1.2)
172 plt.legend ()
173 plt.xlabel(’Number of Iterations ’)
174 plt.ylabel(’Average Response Times (in secs)’)
175 plt.xlim ((0,(n_iterations /100)))
176 plt.tight_layout ()
177 plt.savefig(’./plots/plot_p_2_p.png’)
178 plt.close ()

A.6 uniform-graph-partition.py

1 # M/M/c Queue is a Queue with only ‘c‘ servers and an infinite
buffer.

2 # Basic Parameter of M/M/c queue:
3 # 1. Packet request Rate: ‘request ‘, the parameter of

Possion R.V.
4 # 2. Packet Serving Rate: ‘service ‘, the parameter of Expo R

.V.
5 # 3. Number of Servers: ‘server ‘
6 # 4. sum: p0 + p1 + p2 + ... pc - pc
7
8 # Script Simulation: Graph Partition (Uniform Informed)
9

10 import matplotlib.pyplot as plt
11 import os
12 import math
13 import random
14 import math
15 import time
16 alpha =1.0
17 class Queue(object):
18 def __init__(self , request , service , server):
19 self.request = float(request)
20 self.service = float(service)
21 self.server = server
22 self.utilization = request / (service * server)
23 power = 1.0
24 factor = 1.0
25 sum = 1.0
26 for i in range(1, server + 1):
27 power *= request / self.service
28 factor /= i
29 sum += power * factor
30 sum -= power * factor

114

Appendices NSA5930 : Master’s Thesis in Spring 2018

31 self.prob_sum = sum * (1.0 / (sum + ((power * factor)
/ (1 - self.utilization))))

32
33 def avg_response_time(self):
34 """
35 1. Probability when a packet comes , it needs to queue

in the buffer.
36 That is, P(W>0) = 1 - P(N < c), Also known as Erlang -C

function => Prob. Queue
37
38 2. Average time of packets spending in the queue) =>

Average Queue Time
39
40 3. Return the average time of packets spending in the

system (in service and in the queue).
41 i.e. (Prob. Queue / Average Queue Time) + (1.0 /

service)
42 """
43 return ((1.0 - self.prob_sum) / (self.server * self.

service - self.request)) + 1.0 / self.service
44
45 def function(servers ,request_id):
46 request = request_id
47 service = 15
48 server = servers
49 queue = Queue(request , service , server)
50 avg_response_time = queue.avg_response_time ()
51 return avg_response_time
52
53 _groups = {’group_1 ’ : [’zone_1 ’, ’zone_2 ’], ’group_2 ’ : [’

zone_2 ’, ’zone_3 ’], ’group_3 ’: [’zone_3 ’, ’zone_4 ’], ’
group_4 ’ : [’zone_4 ’, ’zone_1 ’]}

54 zone_1 =[]
55 zone_2 =[]
56 zone_3 =[]
57 zone_4 =[]
58 zones ={}
59 resp_times ={}
60
61 def groups(num ,group ,zones ,resp_times):
62 _temp ={}
63 for i in _groups[group]:
64 if str(’resp_time_ ’+i) in resp_times.keys():
65 _temp[’resp_time_ ’+i] = function(zones[i],

request_id[i][num])
66 resp_times[’resp_time_ ’+i] = function(zones[i

], request_id[i][num])
67 average = sum(_temp.values ()) / len(_temp)
68 _a = _temp[min(_temp , key=_temp.get)]
69 r = random.random ()
70 prob = alpha * abs((average - _a) / average)
71 _min = _temp[min(_temp , key=_temp.get)]
72 _max = _temp[max(_temp , key=_temp.get)]
73 move = min(_temp , key=_temp.get).replace("resp_time_",

"")
74 get = max(_temp , key=_temp.get).replace("resp_time_",

"")
75 return average , _a , r, prob , _max , move , get ,_temp

115

Appendices NSA5930 : Master’s Thesis in Spring 2018

76
77 def _x_groups(num ,group_i , group_j ,zones ,resp_times):
78 average_gi , _a_gi , r_gi , prob_gi , _max_gi , move_gi , get_gi

, _temp_gi = groups(num ,group_i ,zones ,resp_times)
79 average_gj , _a_gj , r_gj , prob_gj , _max_gj , move_gj , get_gj

, _temp_gj = groups(num ,group_j ,zones ,resp_times)
80 _min_gi = min(_temp_gi , key=_temp_gi.get).replace("

resp_time_","")
81 _min_gj = min(_temp_gj , key=_temp_gj.get).replace("

resp_time_","")
82 _x_common = ’’.join(list(set(group_i) & set(group_j)))
83 if _min_gi == _min_gj:
84 _max_g_i_j = max(max(_temp_gi , key=_temp_gi.get), max(

_temp_gj , key=_temp_gj.get)).replace("resp_time_","
")

85 for i in group_i:
86 if i is not _x_common:
87 _x_other_i = i
88 for j in group_j:
89 if j is not _x_common:
90 _x_other_j = j
91 if _max_g_i_j == _x_other_i:
92 if _a_gi < average_gi:
93 if r_gi < prob_gi:
94 if zones[_min_gi] > 1:
95 zones[_min_gi]=zones[_min_gi] - 1
96 zones[_max_g_i_j]=zones[_max_g_i_j] +

1
97 if _max_g_i_j == _x_other_j:
98 if _a_gj < average_gj:
99 if r_gj < prob_gj:

100 if zones[_min_gj] > 1:
101 zones[_min_gj]=zones[_min_gj] - 1
102 zones[_max_g_i_j] =zones[_max_g_i_j] +

1
103 else:
104 if _a_gi < average_gi:
105 if r_gi < prob_gi:
106 if zones[move_gi] > 1:
107 zones[move_gi] = zones[move_gi] - 1
108 zones[get_gi] = zones[get_gi] + 1
109 if _a_gj < average_gj:
110 if r_gj < prob_gj:
111 if zones[move_gj] > 1:
112 zones[move_gj] = zones[move_gj] - 1
113 zones[get_gj] = zones[get_gj] + 1
114
115 def iteration(num ,n_zone):
116 zone_1 =[]
117 zone_2 =[]
118 zone_3 =[]
119 zone_4 =[]
120 zones ={}
121 resp_times ={}
122 n_vm_per_zone = 10
123 n_vm = n_zone * n_vm_per_zone
124 for zone in range(0,n_zone):
125 zones[’zone_ ’+str(zone +1)] = 0

116

Appendices NSA5930 : Master’s Thesis in Spring 2018

126 resp_times[’resp_time_zone_ ’+str(zone +1)] = 0
127 for index , key in enumerate(zones):
128 zones[key] = int(n_vm / n_zone)
129 for iteration in range(n_iterations):
130 if iteration % 40000 == 0:
131 num += 1
132 if num > n_zone - 1:
133 num = 0
134 pass
135 if iteration % 7 == 0:
136 _x_groups(num ,’group_1 ’,’group_2 ’,zones ,resp_times

)
137 if iteration % 7 == 0:
138 _x_groups(num ,’group_2 ’,’group_3 ’,zones ,resp_times

)
139 if iteration % 7 == 0:
140 _x_groups(num ,’group_3 ’,’group_4 ’,zones ,resp_times

)
141 if iteration % 7 == 0:
142 _x_groups(num ,’group_4 ’,’group_1 ’,zones ,resp_times

)
143
144 if iteration % 100 == 0:
145 os.system(’clear’)
146 for key , val in sorted(zones.items()):
147 print (’VMs in’,key , ’:’, val)
148 for key , val in sorted(resp_times.items()):
149 print (key ,’:’,val)
150 x = key.replace("resp_time_","")
151 if x == ’zone_1 ’:
152 zone_1.append(val)
153 if x == ’zone_2 ’:
154 zone_2.append(val)
155 if x == ’zone_3 ’:
156 zone_3.append(val)
157 if x == ’zone_4 ’:
158 zone_4.append(val)
159 print(’Request ID Set:’,num)
160 print(’Iteration:’, iteration , ’/’, n_iterations)
161 print(’-----------------------\n’)
162 pass
163 return zone_1 , zone_2 , zone_3 , zone_4
164
165 def zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,zone_avg_3

,zone_avg_4):
166 for i in range(1,times +1):
167 zone_avg_1[str(i)], zone_avg_2[str(i)], zone_avg_3[str

(i)] , zone_avg_4[str(i)]= iteration(num ,n_zone)
168 return zone_avg_1 , zone_avg_2 , zone_avg_3 , zone_avg_4
169 n_iterations =120000
170 n_zone =4
171 num = 0
172 request_id = {’zone_1 ’: [60,70,30,35], ’zone_2 ’:

[70,30,35,60], ’zone_3 ’: [30,35,60,70], ’zone_4 ’:
[35 ,60 ,70 ,30]}

173 zone_avg_1 ={}
174 zone_avg_2 ={}
175 zone_avg_3 ={}

117

Appendices NSA5930 : Master’s Thesis in Spring 2018

176 zone_avg_4 ={}
177 times =100
178 x,y,z,u=zone_avg(num ,times ,n_zone ,zone_avg_1 ,zone_avg_2 ,

zone_avg_3 ,zone_avg_4)
179 _x=[sum(t)/times for t in zip(*x.values ())]
180 _y=[sum(t)/times for t in zip(*y.values ())]
181 _z=[sum(t)/times for t in zip(*z.values ())]
182 _u=[sum(t)/times for t in zip(*u.values ())]
183 plt.figure ()
184 plt.title(’Test -Simulation: Response Times - Using Graph

Partitions ’)
185 plt.plot(_x, label=’Zone 1’, linestyle=’--’, linewidth =1.2)
186 plt.plot(_y, label=’Zone 2’, linestyle=’--’, linewidth =1.2)
187 plt.plot(_z, label=’Zone 3’, linestyle=’--’, linewidth =1.2)
188 plt.plot(_u, label=’Zone 4’, linestyle=’--’, linewidth =1.2)
189 plt.legend ()
190 plt.xlabel(’Number of Iterations ’)
191 plt.ylabel(’Average Response Times (in secs)’)
192 plt.xlim ((0,(n_iterations /100)))
193 plt.tight_layout ()
194 plt.savefig(’./plots/plot_graph_partition.png’)
195 plt.close ()

118

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix B

Test-Bed Assisting Scripts

B.1 create-instance-group.sh

1 #!/bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Create Instance -Group
9

10 function progress {
11 echo "$cmd"
12 eval "$cmd" > /dev/null 2>&1 & PID=$! #simulate a long

process
13 printf "PROGRESS: ["
14 # While process is running ...
15 while kill -0 $PID 2> /dev/null ; do
16 printf ">>"
17 sleep 1
18 done
19 printf "] done!\n\n"
20 }
21
22 # Gets all the initial setup values
23 read -e -p "Enter loadbalancer name [ENTER for recommended]: "

-i "lb-dc" lb
24 read -e -p "Enter address name [ENTER for recommended]: " -i "

lb -ip -cr" address_name
25 read -e -p "Enter backend -service name [ENTER for recommended

]: " -i "web -map -backend -service" web_map
26 read -e -p "Enter url -map name [ENTER for recommended]: " -i "

web -map" url_map
27 read -e -p "Enter target -http -proxy name [ENTER for

recommended]: " -i "http -lb -proxy" target_proxy
28 read -e -p "Enter forwarding -rules name [ENTER for recommended

]: " -i "http -cr-rule" forward_rule
29

119

Appendices NSA5930 : Master’s Thesis in Spring 2018

30 zones=$(gcloud compute instances list | tail -n+2 | grep $lb |
grep -v TERMINATED | awk ’{print $2}’) # Finds all the

data -centre region names
31
32 printf "\nSetting up Cross -Region :\n\n"
33
34 cmd="gcloud -q compute addresses create $address_name --ip-

version=IPV4 --global" # Creates a address in gloud with
the given name

35 progress;
36
37 eval "gcloud -q compute addresses list"
38
39 for i in $zones; do
40 cmd="gcloud -q compute instance -groups unmanaged create $i

-resources --zone $i" # Creates a instance -group for
each region

41 progress;
42 lb_input=$(gcloud -q compute instances list | grep $i |

grep $lb | awk ’{print $1}’)
43 cmd="gcloud -q compute instance -groups unmanaged add -

instances $i-resources --instances $lb_input --zone $i"
Adds the load -balancer instance of the same region n
unmanaged instance -group

44 progress;
45 done
46
47 eval "gcloud -q compute instance -groups list"
48
49 cmd="gcloud -q compute health -checks create http http -basic -

check" # Creates a health check attribute
50 progress;
51
52 eval "gcloud -q compute health -checks list"
53
54 for i in $zones; do
55 cmd="gcloud -q compute instance -groups unmanaged set -named

-ports $i -resources --named -ports http :80 --zone $i" #
For each instance group , define an HTTP service and map
a port name to the relevant port

56 progress;
57 done
58
59 cmd="gcloud -q compute backend -services create $web_map --

protocol HTTP --health -checks http -basic -check --global" #
Creates a backend service and specify its parameters. Set
the --protocol field to HTTP because we are using HTTP to
go to the instances

60 progress;
61
62 for i in $zones; do
63 cmd="gcloud -q compute backend -services add -backend

$web_map --balancing -mode UTILIZATION --max -utilization
0.5 --capacity -scaler 1 --instance -group $i-resources
--instance -group -zone $i --global" # Adds instance -

groups as backends to the backend - services. A backend
defines the capacity (max CPU utilization or max
queries per second) of the instance -groups it contains.

120

Appendices NSA5930 : Master’s Thesis in Spring 2018

64 progress;
65 done
66
67 eval "gcloud -q compute backend -services list"
68
69 cmd="gcloud -q compute url -maps create $url_map --default -

service $web_map" # Creates a default URL map that directs
all incoming requests to all instances

70 progress;
71
72 cmd="gcloud -q compute target -http -proxies create

$target_proxy --url -map $url_map"
73 progress;
74
75 eval "gcloud -q compute target -http -proxies list"
76
77 lb_ip_address=$(gcloud compute addresses list | grep

$address_name | awk ’{print $2}’)
78 cmd="gcloud -q compute forwarding -rules create $forward_rule

--address $lb_ip_address --global --target -http -proxy
$target_proxy --ports 80" # Creates a target HTTP proxy to
route requests to your URL map

79 progress;
80
81 eval "gcloud -q compute forwarding -rules list"
82
83 printf "\nDone! Cross -Region Set.\n\n"
84
85 echo "THIS MIGHT TAKE SOME TIME TO PROPAGATE ${address_name

^^}. GIVE IT 10 MINUTES AND TRY AGAIN LATER."

B.2 dns.sh

1 #!/bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: DNS Setup
9

10 # Gets inital setup values
11 lb="lb-dc"
12 project="project -brainiac"
13 echo "Setting Cloud DNS Records for zone ’${project}’"
14 ALL_OLD_RECORDS=$(gcloud dns record -sets list --zone=$project

| tail -n+2 | awk ’{print $4}’ | grep -oE "\b([0 -9]{1 ,3}\.)
{3}[0 -9]{1 ,3}\b" | while read line; do echo "\"${line}\"";
done | tr ’\n’ ’ ’) # Finds all the A record -sets of the
given project name

15 ALL_NEW_RECORDS=$(gcloud compute forwarding -rules list | grep
http -cr-rule | awk ’{print $2}’) # Finds the cross -region (
CR) load -balancing IP address

121

Appendices NSA5930 : Master’s Thesis in Spring 2018

16
17 eval "gcloud dns record -sets list --zone=$project"
18 echo "Old Records:"
19 eval "echo $ALL_OLD_RECORDS"
20 eval "gcloud dns record -sets transaction start --zone=$project

"
21 eval "gcloud dns record -sets transaction remove --zone=

$project --name="project -brainiac.eu." --type=A --ttl =300
$ALL_OLD_RECORDS" # Removes the old A record -sets of the
project

22 echo "New Records:"
23 eval "echo $ALL_NEW_RECORDS"
24 eval "gcloud dns record -sets transaction add --zone=$project

--name="project -brainiac.eu." --type=A --ttl =300
$ALL_NEW_RECORDS" # Adds the CR IP address to new A record -
sets of the project

25 eval "gcloud dns record -sets transaction execute --zone=
$project"

26 eval "gcloud dns record -sets list --zone=$project" # Sets the
A record -sets of the project

27 echo "Done! Records Set"
28
29 echo "THIS MIGHT TAKE SOME TIME TO PROPAGATE ${project ^^}.EU.

GIVE IT SOME MINUTES AND TRY AGAIN LATER."

122

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix C

Test-Bed Startup Scripts

C.1 consul-master.sh

1 #! /bin/bash
2
3 # Script: Consul Startup
4
5 sudo su -
6 sudo apt -get update
7 sudo timedatectl set -timezone Europe/Oslo # Sets the timezone
8 sleep 5
9 apt -get install -y git unzip curl jq # Install packages

10 cd /tmp/
11
12 # Setup Consul
13 wget https :// releases.hashicorp.com/consul /1.0.6/ consul_1 .0.6

_linux_amd64.zip
14 unzip consul_1 .0.6 _linux_amd64.zip
15 mv consul /usr/local/bin
16 mkdir -p /var/lib/consul/
17 mkdir -p /usr/share/consul
18 mkdir -p /etc/consul.d
19 cd ~
20 consul_hostname=$(hostname)
21 consul_ip=$(hostname -I)
22 consul_dc=$(hostname | sed "s/consul -master -//g")
23
24 cat <<EOF > /etc/consul.d/ui.json
25 {
26 "addresses": {
27 "http": "0.0.0.0"
28 }
29 }
30 EOF
31
32 # Configure instance as consul server in the cluster and add

as the service
33 cat <<EOF > /etc/systemd/system/consul.service
34 [Unit]
35 Description=Consul
36 Documentation=https ://www.consul.io/
37

123

Appendices NSA5930 : Master’s Thesis in Spring 2018

38 [Service]
39 ExecStart =/usr/local/bin/consul agent -server -ui -bootstrap -

expect =2 -data -dir=/tmp/consul -node=${consul_hostname} -
bind=${consul_ip} -datacenter ${consul_dc} -config -dir=/etc
/consul.d/

40 ExecReload =/bin/kill -HUP $MAINPID
41 LimitNOFILE =65536
42
43 [Install]
44 WantedBy=multi -user.target
45 EOF
46
47 # Consul service started and added to system startup
48 sudo systemctl daemon -reload && sudo systemctl start consul.

service && sudo systemctl enable consul.service
49 consul members

C.2 lb.sh

1 #! /bin/bash
2
3 # Script: Load -Balancer Startup
4
5 sudo su -
6 sudo apt -get update
7 add -apt -repository ppa:vbernat/haproxy -1.7 -y
8 sudo timedatectl set -timezone Europe/Oslo # Sets the timezone
9 sleep 5

10 apt -get update
11 apt -get install -y haproxy git unzip jq # Install packages
12 cd /tmp/
13
14 # Setup Consul
15 wget https :// releases.hashicorp.com/consul /1.0.6/ consul_1 .0.6

_linux_amd64.zip
16 unzip consul_1 .0.6 _linux_amd64.zip
17 mv consul /usr/local/bin
18 mkdir -p /var/lib/consul/
19 mkdir -p /usr/share/consul
20 mkdir -p /etc/consul.d
21 cd ~
22
23 lb_hostname=$(hostname)
24 lb_ip=$(hostname -I)
25 lb_dc=$(hostname | sed "s/lb -//g")
26 consul_ip=$(gcloud compute instances list | tail -n+2 | grep

consul -master -${lb_dc} | awk ’{print $4}’)
27
28 # Configure instance as consul server in the cluster and add

as the service
29 cat <<EOF > /etc/systemd/system/consul.service
30 [Unit]
31 Description=Consul
32 Documentation=https ://www.consul.io/
33
34 [Service]

124

Appendices NSA5930 : Master’s Thesis in Spring 2018

35 ExecStart =/usr/local/bin/consul agent -server -join=${
consul_ip} -data -dir=/tmp/consul -node=${lb_hostname} -bind
=${lb_ip} -datacenter ${lb_dc} -config -dir=/etc/consul.d/

36 ExecReload =/bin/kill -HUP $MAINPID
37 LimitNOFILE =65536
38
39 [Install]
40 WantedBy=multi -user.target
41 EOF
42
43 # Consul service started and added to system startup
44 sudo systemctl daemon -reload && sudo systemctl start consul.

service && sudo systemctl enable consul.service
45
46 cd /tmp/
47 # Setup Consul -HAProxy
48 wget https :// github.com/hashicorp/consul -haproxy/releases/

download/v0 .2.0/ consul -haproxy_0 .2.0 _linux_amd64.tar.gz
49 tar -xvzf consul -haproxy_0 .2.0 _linux_amd64.tar.gz
50 sudo chmod +x consul -haproxy_0 .2.0 _linux_amd64/consul -haproxy
51 mv consul -haproxy_0 .2.0 _linux_amd64/consul -haproxy /usr/local/

bin/
52 cd ~
53
54 # Initiate a HAProxy template
55 cat <<EOF > /etc/consul.d/consul_ha.cfg
56 global
57 log /dev/log local0
58 log /dev/log local1 notice
59 chroot /var/lib/haproxy
60 stats socket /run/haproxy/admin.sock mode 660 level

admin
61 stats timeout 30s
62 user haproxy
63 group haproxy
64 daemon
65 # Default SSL material locations
66 ca -base /etc/ssl/certs
67 crt -base /etc/ssl/private
68 # Default ciphers to use on SSL -enabled listening

sockets.
69 # For more information , see ciphers (1SSL). This list

is from:
70 # https :// hynek.me/articles/hardening -your -web -

servers -ssl -ciphers/
71 # An alternative list with additional directives can

be obtained from
72 # https :// mozilla.github.io/server -side -tls/ssl -

config -generator /? server=haproxy
73 ssl -default -bind -ciphers ECDH+AESGCM:DH+AESGCM:ECDH+

AES256:DH+AES256:ECDH+AES128:DH+AES:RSA+AESGCM:RSA+
AES:!aNULL:$

74 ssl -default -bind -options no-sslv3
75 defaults
76 log global
77 mode http
78 option httplog
79 option dontlognull

125

Appendices NSA5930 : Master’s Thesis in Spring 2018

80 timeout connect 5000
81 timeout client 50000
82 timeout server 50000
83 errorfile 400 /etc/haproxy/errors /400. http
84 errorfile 403 /etc/haproxy/errors /403. http
85 errorfile 408 /etc/haproxy/errors /408. http
86 errorfile 500 /etc/haproxy/errors /500. http
87 errorfile 502 /etc/haproxy/errors /502. http
88 errorfile 503 /etc/haproxy/errors /503. http
89 errorfile 504 /etc/haproxy/errors /504. http
90
91 frontend http_front
92 bind *:80
93 stats uri /haproxy?stats
94 default_backend http_back
95
96 backend http_back
97 balance roundrobin
98 {{range .c}}
99 {{.}}{{ end}}

100
101 listen stats
102 bind *:9000
103 mode http
104 stats enable
105 stats show -node
106 stats show -legends
107 stats refresh 20s
108 stats uri /
109 stats realm HAproxy -Statistics
110 stats hide -version
111 EOF
112
113 systemctl restart haproxy
114 # Start a background process for consul -haproxy to add the

backend -servers dynamically when the a worker instance
register/deregister

115 nohup sudo consul -haproxy -addr=localhost :8500 -in /etc/consul
.d/consul_ha.cfg -backend "c=webserver@${lb_dc }:80" -out /
etc/haproxy/haproxy.cfg -reload "/etc/init.d/haproxy
restart" &>/dev/null & disown

116 echo ’lb_dc=$(hostname | sed "s/lb -//g") && nohup sudo consul -
haproxy -addr=localhost :8500 -in /etc/consul.d/consul_ha.
cfg -backend "c=webserver@${lb_dc }:80" -out /etc/haproxy/
haproxy.cfg -reload "/etc/init.d/haproxy restart" &>/dev/
null & disown && exit 0’ | sudo tee /etc/rc.local # Set the
above command in the system startup

C.3 nat-gateway.sh

1 #! /bin/bash
2
3 # Script: Nat -Gateway Startup
4
5 sudo su -
6 sudo apt -get update

126

Appendices NSA5930 : Master’s Thesis in Spring 2018

7 sudo timedatectl set -timezone Europe/Oslo # Sets the timezone
8 sleep 5
9 # Enable ip forwarding for nat -gateway

10 sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
11 sudo iptables -t nat -A POSTROUTING -o ens4 -j MASQUERADE

C.4 worker.sh

1 #! /bin/bash
2
3 # Script: Worker Startup
4
5 sudo su -
6 sudo apt -get update
7 sudo timedatectl set -timezone Europe/Oslo # Sets the timezone
8 sleep 5
9 apt -get install -y git unzip bc jq nginx # Install packages

10 ufw allow ’Nginx HTTP ’
11 systemctl start nginx # Starts Nginx
12
13 # Setup Consul
14 cd /tmp/
15 wget https :// releases.hashicorp.com/consul /1.0.6/ consul_1 .0.6

_linux_amd64.zip
16 unzip consul_1 .0.6 _linux_amd64.zip
17 mv consul /usr/local/bin
18 mkdir -p /var/lib/consul/
19 mkdir -p /usr/share/consul
20 mkdir -p /etc/consul.d
21 cd ~
22
23 echo ’{"service": {"name": "webserver", "tags": ["HTTP"], "

port": 80}}’ | sudo tee /etc/consul.d/webserver.json #
Creates a web server

24
25 worker_hostname=$(hostname)
26 worker_ip=$(hostname -I)
27 worker_dc=$(hostname | cut -c8 -10)
28
29 nohup sudo consul agent -server=false -data -dir=/tmp/consul -

node=${worker_hostname} -bind=${worker_ip} -enable -script -
checks=true -datacenter ${worker_dc} -config -dir=/etc/
consul.d &>/dev/null & sleep 3 && consul join consul -master
-${worker_dc} # Registers to the consul -cluster as client

30 echo ’worker_hostname=$(hostname) && worker_ip=$(hostname -I)
&& worker_dc=$(hostname | cut -c8 -10) && nohup sudo consul
agent -server=false -data -dir=/tmp/consul -node=${
worker_hostname} -bind=${worker_ip} -enable -script -checks=
true -datacenter ${worker_dc} -config -dir=/etc/consul.d &>/
dev/null & sleep 3 && consul join consul -master -${worker_dc
} && exit 0’ | sudo tee /etc/rc.local # Save the above
command at system startup

31
32 cd /tmp/
33 git clone https :// github.com/samiulsaki/project -brainiac.git

127

Appendices NSA5930 : Master’s Thesis in Spring 2018

34 nohup sudo /bin/bash -c ’while [true]; do sleep 30; /tmp/
project -brainiac/sidekicks/csv -gen.sh; done ’ &>/dev/null &
disown # Starts CSV generator script in worker instance

35 nohup sudo /bin/bash -c ’while [true]; do timer=$(((RANDOM
% 300) + 300)); sleep $timer; /tmp/project -brainiac/

startups/worker -[variant]/[variant].sh; done ’ &>/dev/null &
disown # Starts the migration script in worker instance

128

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix D

Test-Bed Migration Scripts

D.1 csv-gen.sh

1 #!/bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: CSV Generator
9

10 lb=$(gcloud compute instances list | grep lb -dc | grep -v
TERMINATED | awk ’{print $1}’) # Finds all the load -
balancers in the same network

11
12 for argh in $lb; do
13 lb_ip=$(gcloud compute instances list | grep $argh |

awk ’{print $5}’) # Find the IP address of a
particular load -balancer

14 rtime=$(eval "curl -sSL ’http :// $lb_ip/haproxy?stats;
csv;norefresh ’ | cut -d "," -f 2,61 | column -s, -t
| grep worker | awk ’{print \$2}’ ") # Finds the

number of back -end servers (workers) and the
response time of each server of the load -balancer

15 sum=0
16 for i in $rtime; do
17 sum=$((sum + i)) # Sum up all the workers

total response time
18 done
19 echo "$((sum / $(echo "${rtime}" | wc -l)))" >> /

home/ubuntu/$argh.csv # Calculates the average
response time of the load -balancer and append to
the CSV file

20 done

D.2 migrate-uniform-naive.sh

129

Appendices NSA5930 : Master’s Thesis in Spring 2018

1 #! /bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Migration Uniform (Naive) [move to any datacentre]
9

10 # Gets initial values
11 serv_account="my -instances@samiulsaki -148219. iam.

gserviceaccount.com"
12 own_hostname=$(hostname)
13 own_dc=$(hostname | cut -c8 -10)
14 own_zone=$(gcloud compute instances list | grep $own_hostname

| awk ’{print $2}’)
15
16 CSVS=$(ls /home/ubuntu /) # Reads through all the lb logs for

alive data -centre (dc) created by csv -gen script
17 avg_resp =0
18
19 for argh in $CSVS; do
20 resp=0
21 for i in $(tail -n 50 /home/ubuntu/${argh}); do # Read

the last 50 entries (average response time)
22 resp=$((resp + i))
23 done
24 eval "var=$(echo $argh | sed "s/lb -//g" | sed "s/.csv

//g")" # Create a variable with dc name
25 eval "${var}= $resp" # Add the response time to

corresponding dc varible
26 avg_resp=$((avg_resp + resp))
27 done
28
29 avg_resp=$((avg_resp / $(echo "${CSVS}" | wc -l))) #

Calculates average total response time of all the alive dc
30 own_resp=$((own_dc))
31 total_zones=$(gcloud compute instances list | grep lb-dc |

grep -v TERMINATED | awk ’{print $1}’) # Finds all the
alive dc name

32 cand_dc=$(echo $total_zones | xargs shuf -n1 -e | sed "s/lb -//
g") # Choose a random dc as candidate zone

33 cand_zone=$(gcloud compute instances list | grep lb-$cand_dc |
awk ’{print $2}’) # Finds the gcloud region of the

candidate zone
34 cand_dc_max_inst=$(gcloud compute instances list | grep worker

-$cand_dc | awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) #
Finds the existing number of worker instances in dc

35 own_dc_alive_inst=$(gcloud compute instances list | grep
worker -$own_dc | grep -v TERMINATED | grep -v STOPPING |
awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) # Finds the
exsiting number of alive worker instances in own dc

36 random=$(((RANDOM % 1000) + 1))
37

130

Appendices NSA5930 : Master’s Thesis in Spring 2018

38 migrate_thres =3 # Set in minimum threshold limit for how many
VMs per zone

39 migrate_resp =1
40 temp_avg=$(echo "$avg_resp / 1000" | bc -l)
41 temp_limit=$(echo "$migrate_resp /1000" | bc -l) # Set in

threshold for total system average response time to migrate
42
43 # If own dc have more than 3 alive worker instances , if

candidate dc is not same as own dc , if own response time is
less than average total response time , if system total

average response time is higher than own zone average
response time

44 if [$own_dc_alive_inst -gt $migrate_thres] && [$cand_dc !=
$own_dc] && [$own_resp -lt $avg_resp] && (($(echo "
$temp_avg > $temp_limit" | bc -l)))

45 then
46 eval "gcloud -q compute instances create worker -$cand_dc -$

((cand_dc_max_inst + 1))-$random --network default --no
-address --image ubuntu -console --machine -type f1-micro
--zone $cand_zone --tags no-ip -$cand_dc --service -

account $serv_account --scopes cloud -platform --
metadata -from -file startup -script =/tmp/project -brainiac
/startups/worker -uniform -naive/worker -uniform -naive.sh"
Creates a new worker instance at candidate dc

47 eval "consul leave -http -addr =127.0.0.1:8500" # Gracefully
removes itself from consul cluster

48 sleep 2
49 eval "gcloud -q compute instances delete $own_hostname --

zone $own_zone" # Delete itself from gcloud
50 fi

D.3 migrate-uniform-informed.sh

1 #! /bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Migration Unform (Informed) [move to the datacentre

which is only worse (rondomly)]
9

10 # Gets initial values
11 serv_account="my -instances@samiulsaki -148219. iam.

gserviceaccount.com"
12 own_hostname=$(hostname)
13 own_dc=$(hostname | cut -c8 -10)
14 own_zone=$(gcloud compute instances list | grep $own_hostname

| awk ’{print $2}’)
15
16 CSVS=$(ls /home/ubuntu /) # Reads through all the lb logs for

alive data -centre (dc) created by csv -gen script
17 avg_resp =0

131

Appendices NSA5930 : Master’s Thesis in Spring 2018

18
19 for argh in $CSVS; do
20 resp=0
21 for i in $(tail -n 50 /home/ubuntu/${argh}); do # Read

the last 50 entries (average response time)
22 resp=$((resp + i))
23 done
24 eval "var=$(echo $argh | sed "s/lb -//g" | sed "s/.csv

//g")" # Create a variable with dc name
25 eval "${var}= $resp" # Add the response time to

corresponding dc varible
26 avg_resp=$((avg_resp + resp))
27 done
28
29 avg_resp=$((avg_resp / $(echo "${CSVS}" | wc -l))) #

Calculates average total response time of all the alive dc
30 own_resp=$((own_dc))
31
32 cand_dc=$(for i in $(seq 1 $(echo "${CSVS}" | wc -l)); do name

=dc$i; value=${!name}; echo "$name $value"; done | sort -
k2n | grep -v $own_dc | awk -v x=$((own_resp)) ’{ p=$1; q=
$2; if (q > x) print ; }’ | awk ’{print $1}’ | xargs shuf -
n1 -e) # Choose a candidate dc (in random) which has the
higher average response time

33 cand_zone=$(gcloud compute instances list | grep lb-$cand_dc |
awk ’{print $2}’) # Finds the gcloud region of the

candidate zone
34 cand_dc_max_inst=$(gcloud compute instances list | grep worker

-$cand_dc | awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) #
Finds the existing number of worker instances in dc

35 own_dc_alive_inst=$(gcloud compute instances list | grep
worker -$own_dc | grep -v TERMINATED | grep -v STOPPING |
awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) # Finds the
exsiting number of alive worker instances in own dc

36 random=$(((RANDOM % 1000) + 1))
37
38 migrate_thres =3 # Set in minimum threshold limit for how many

VMs per zone
39 migrate_resp =1
40 temp_avg=$(echo "$avg_resp / 1000" | bc -l)
41 temp_limit=$(echo "$migrate_resp /1000" | bc -l) # Set in

threshold for total system average response time to migrate
42
43 # If own dc have more than 3 alive worker instances , if

candidate dc is not same as own dc , if own response time is
less than average total response time , if system total

average response time is higher than own zone average
response time

44 if [$own_dc_alive_inst -gt $migrate_thres] && [$cand_dc !=
$own_dc] && [$own_resp -lt $avg_resp] && (($(echo "
$temp_avg > $temp_limit" | bc -l)))

45 then
46 eval "gcloud -q compute instances create worker -$cand_dc -$

((cand_dc_max_inst + 1))-$random --network default --no
-address --image ubuntu -console --machine -type f1-micro
--zone $cand_zone --tags no-ip -$cand_dc --service -

account $serv_account --scopes cloud -platform --
metadata -from -file startup -script =/tmp/project -brainiac

132

Appendices NSA5930 : Master’s Thesis in Spring 2018

/startups/worker -uniform -informed/worker -uniform -
informed.sh" # Creates a new worker instance at
candidate dc

47 eval "consul leave -http -addr =127.0.0.1:8500" # Gracefully
removes itself from consul cluster

48 sleep 2
49 eval "gcloud -q compute instances delete $own_hostname --

zone $own_zone" # Delete itself from gcloud
50 fi

D.4 migrate-biased.sh

1 #! /bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Migration Biased [move to the worst datacentre with

highest probability]
9

10 # Gets initial values
11 serv_account="my -instances@samiulsaki -148219. iam.

gserviceaccount.com"
12 own_hostname=$(hostname)
13 own_dc=$(hostname | cut -c8 -10)
14 own_zone=$(gcloud compute instances list | grep $own_hostname

| awk ’{print $2}’)
15
16 CSVS=$(ls /home/ubuntu /) # Reads through all the lb logs for

alive data -centre (dc) created by csv -gen script
17 avg_resp =0
18 declare -A array_temp # Temporary array for response time
19
20 for argh in $CSVS; do
21 resp=0
22 for i in $(tail -n 50 /home/ubuntu/${argh}); do # Read the

last 50 entries (average response time)
23 resp=$((resp + i))
24 done
25 eval "var=$(echo $argh | sed "s/lb -//g" | sed "s/.csv//g")

" # Create a variable with dc name
26 eval "${var}= $resp" # Add the response time to

corresponding dc varible
27 avg_resp=$((avg_resp + resp))
28 array_temp +=(["$var"]="${resp}") # Add the response time

to temporary array with dc variable as index
29 done
30
31 avg_resp=$((avg_resp / $(echo "${CSVS}" | wc -l))) #

Calculates average total response time of all the alive dc
32 own_resp=$((own_dc))
33 declare -A array_prob # Array for probability

133

Appendices NSA5930 : Master’s Thesis in Spring 2018

34
35 for i in "${! array_temp[@]}"; do
36 x=${array_temp[$i]}
37 if [$x -eq "0"]
38 then
39 x=$((1))
40 fi
41 if [$x != 0] && ["$i" != "$own_dc"] # Includes all the

dc response time except own dc
42 then
43 c=$(echo "($avg_resp - $x) / $avg_resp" | bc -l) #

Calculates the probability to move for each dc
44 array_prob +=(["$i"]="${c}") # Add the probability to

probability array for with dc variable as index
45 fi
46 done
47
48 # Choose a dc probability as initial maximum probability
49 t_keys =(${! array_prob[@]})
50 t_size=${#array_prob[@]}
51 t_random_index=$((RANDOM % t_size))
52 cand_dc="${t_keys[${t_random_index }]}"
53 max=${array_prob[$cand_dc]}
54
55 for j in "${! array_prob[@]}"; do
56 u=$(echo "${array_prob[$j]}" | bc -l)
57 v=$(echo "$max" | bc -l)
58 w=$(echo "$u < $v" | bc -l)
59 if [$w == ’1’]; then # Finds the probability that it

closest to moving.
60 max=$j
61 cand_dc=$j # Choose the candidate zone with highest

probability to move
62 fi
63 done
64
65 cand_zone=$(gcloud compute instances list | grep lb-$cand_dc |

awk ’{print $2}’) # Finds the gcloud region of the
candidate zone

66 cand_dc_max_inst=$(gcloud compute instances list | grep worker
-$cand_dc | awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) #
Finds the existing number of worker instances in dc

67 own_dc_alive_inst=$(gcloud compute instances list | grep
worker -$own_dc | grep -v TERMINATED | grep -v STOPPING |
awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) # Finds the
exsiting number of alive worker instances in own dc

68 random=$(((RANDOM % 1000) + 1))
69
70 migrate_thres =3 # Set in minimum threshold limit for how many

VMs per zone
71 migrate_resp =1
72 temp_avg=$(echo "$avg_resp / 1000" | bc -l)
73 temp_limit=$(echo "$migrate_resp /1000" | bc -l) # Set in

threshold for total system average response time to migrate
74
75 # If own dc have more than 3 alive worker instances , if

candidate dc is not same as own dc , if own response time is
less than average total response time , if system total

134

Appendices NSA5930 : Master’s Thesis in Spring 2018

average response time is higher than own zone average
response time

76 if [$own_dc_alive_inst -gt $migrate_thres] && [$cand_dc !=
$own_dc] && [$own_resp -lt $avg_resp] && (($(echo "
$temp_avg > $temp_limit" | bc -l)))

77 then
78 eval "gcloud -q compute instances create worker -$cand_dc -$

((cand_dc_max_inst + 1))-$random --network default --no
-address --image ubuntu -console --machine -type f1-micro
--zone $cand_zone --tags no-ip -$cand_dc --service -

account $serv_account --scopes cloud -platform --
metadata -from -file startup -script =/tmp/project -brainiac
/startups/worker -biased/worker -biased.sh" # Creates a
new worker instance at candidate dc

79 eval "consul leave -http -addr =127.0.0.1:8500" # Creates a
new worker instance at candidate dc

80 sleep 2
81 eval "gcloud -q compute instances delete $own_hostname --

zone $own_zone" # Delete itself from gcloud
82 fi

D.5 migrate-single-point.sh

1 #! /bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Migration Single Point [move to the worst datacentre

]
9

10 # Gets initial values
11 serv_account="my -instances@samiulsaki -148219. iam.

gserviceaccount.com"
12 own_hostname=$(hostname)
13 own_dc=$(hostname | cut -c8 -10)
14 own_zone=$(gcloud compute instances list | grep $own_hostname

| awk ’{print $2}’)
15
16 CSVS=$(ls /home/ubuntu /) # Reads through all the lb logs for

alive data -centre (dc) created by csv -gen script
17 avg_resp =0
18 for argh in $CSVS; do
19 resp=0
20 for i in $(tail -n 100 /home/ubuntu/${argh}); do # Read

the last 50 entries (average response time)
21 resp=$((resp + i))
22 done
23 eval "var=$(echo $argh | sed "s/lb -//g" | sed "s/.csv//g")

" # Create a variable with dc name
24 eval "${var}= $resp" # Add the response time to

corresponding dc varible

135

Appendices NSA5930 : Master’s Thesis in Spring 2018

25 avg_resp=$((avg_resp + resp))
26 done
27
28 avg_resp=$((avg_resp / $(echo "${CSVS}" | wc -l))) #

Calculates average total response time of all the alive dc
29 own_resp=$((own_dc))
30 cand_dc=$(for i in $(seq 1 $(echo "${CSVS}" | wc -l)); do name

=dc$i; value=${!name}; echo "$name $value"; done | grep -v
$own_dc | sort -k2n | tail -1 | awk ’{print $1}’) # Choose
a candidate dc which has the highest average response time

31 cand_zone=$(gcloud compute instances list | grep lb-$cand_dc |
awk ’{print $2}’) # Finds the gcloud region of the

candidate zone
32 cand_dc_max_inst=$(gcloud compute instances list | grep worker

-$cand_dc | awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) #
Finds the existing number of worker instances in dc

33 own_dc_alive_inst=$(gcloud compute instances list | grep
worker -$own_dc | grep -v TERMINATED | grep -v STOPPING |
awk ’{print $1}’ | grep -o ’[0-9]*$’ | wc -l) # Finds the
exsiting number of alive worker instances in own dc

34 random=$(((RANDOM % 1000) + 1))
35
36 migrate_thres =3 # Set in minimum threshold limit for how many

VMs per zone
37 migrate_resp =1
38 temp_avg=$(echo "$avg_resp / 1000" | bc -l)
39 temp_limit=$(echo "$migrate_resp /1000" | bc -l) # Set in

threshold for total system average response time to migrate
40
41 # If own dc have more than 3 alive worker instances , if

candidate dc is not same as own dc , if own response time is
less than average total response time , if system total

average response time is higher than own zone average
response time

42 if [$own_dc_alive_inst -gt $migrate_thres] && [$cand_dc !=
$own_dc] && [$own_resp -lt $avg_resp] && (($(echo "
$temp_avg > $temp_limit" | bc -l)))

43 then
44 eval "gcloud -q compute instances create worker -$cand_dc -$

((cand_dc_max_inst + 1))-$random --network default --no
-address --image ubuntu -console --machine -type f1-micro
--zone $cand_zone --tags no-ip -$cand_dc --service -

account $serv_account --scopes cloud -platform --
metadata -from -file startup -script =/tmp/project -brainiac
/startups/worker -single -point/worker -single -point.sh" #
Creates a new worker instance at candidate dc

45 eval "consul leave -http -addr =127.0.0.1:8500" # Gracefully
removes itself from consul cluster

46 sleep 2
47 eval "gcloud -q compute instances delete $own_hostname --

zone $own_zone" # Delete itself from gcloud
48 fi

136

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix E

Test-Bed Initial Script

E.1 automate.sh

1 #!/bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Initial Setup
9

10 function progress {
11 echo "$cmd"
12 eval "$cmd" > /dev/null 2>&1 & PID=$! #simulate a long

process
13 printf "PROGRESS: ["
14 # While process is running ...
15 while kill -0 $PID 2> /dev/null ; do
16 printf ">>"
17 sleep 1
18 done
19 printf "] done!\n\n"
20 }
21
22 function instance_lists {
23 eval "gcloud compute instances list"
24 }
25
26 clear
27
28 echo "This is the initial infrustructure setup for the

autonomous VMs. Follow the instructions."
29
30 instance_lists
31
32 # Gets all the initial setup values
33 read -e -p "Enter zone names [separated by comma]: e.g. " -i "

us -central1 -a,southamerica -east1 -b,europe -west3 -c,asia -
northeast1 -c" zone_name

137

Appendices NSA5930 : Master’s Thesis in Spring 2018

34 z=$(echo "$zone_name" | sed ’s/,/ /g’ | wc -w)
35 read -e -p "Enter how many zones [Should match the previous

agrument] " -i "$z" zone_number # Regions are separated by
zone -names separated by commas

36 read -e -p "Enter images to use [ENTER for recommended]: " -i
"ubuntu -console" image

37 read -e -p "Enter loadbalancer name [ENTER for recommended]: "
-i "lb-dc" lb

38 read -e -p "Enter loadbalancer machine type [ENTER for
recommended]: " -i "n1-standard -2" lb_machine

39 read -e -p "Enter consul -master name [ENTER for recommended]:
" -i "consul -master -dc" consul

40 read -e -p "Enter consul -master machine type [ENTER for
recommended]: " -i "n1-standard -1" consul_machine

41 read -e -p "Enter instance name [ENTER for recommended]: " -i
"worker" inst

42 read -e -p "Enter instance machine type [ENTER for recommended
]: " -i "f1 -micro" inst_machine

43 read -e -p "Enter how many instances per loadbalancer [ENTER
for recommended]: " -i "30" inst_number

44 read -e -p "Enter the variants name [ENTER uniform -naive/
uniform -informed/biased/single -point]: " -i "single -point"
variant # Migration script to imply in the network

45 read -e -p "Enter the service account email [ENTER for
recommended]: " -i "my-instances@samiulsaki -148219. iam.
gserviceaccount.com" serv_account

46
47 max_lb=$(gcloud compute instances list | grep $lb | awk ’{

print $1}’ | grep -o ’[0-9]*$’ | jq -s max) # Gets total
number of existing load -balancers to avoid data -centre name
duplications

48 max_consul=$(gcloud compute instances list | grep $consul |
awk ’{print $1}’ | grep -o ’[0-9]*$’ | jq -s max) # Gets
total number of existing consul -masters to avoid consul
server name duplications

49 k=1
50 l=1
51 echo "THIS MAY TAKE A WHILE , PLEASE BE PATIENT WHILE THE

COMMANDS ARE RUNNING ..."
52
53 ./ sidekicks/clean -instance -group.sh # Initiates instance -group

cleanup process
54
55 for i in $(echo $zone_name | sed "s/,/ /g"); do
56 printf "\nPopulating $i \n"
57 cmd="gcloud -q compute instances create $consul$ ((

max_consul + k)) --image $image --machine -type
$consul_machine --zone $i --tags http -server --service -
account $serv_account --scopes cloud -platform --
metadata -from -file startup -script =./ startups/consul -
master.sh" # Creates a consul -master instance for each
data -centre

58 progress;
59
60 cmd="gcloud -q compute instances create lb((max_lb + k))

--image $image --machine -type $lb_machine --zone $i --
tags http -server --service -account $serv_account --
scopes cloud -platform --metadata -from -file startup -

138

Appendices NSA5930 : Master’s Thesis in Spring 2018

script =./ startups/lb.sh" # Creates a load -balancer
instance for each data -centre

61 progress;
62
63 cmd="gcloud -q compute instances create nat -gateway -dc$((

max_lb + k)) --network default --can -ip-forward --image
$image --machine -type $consul_machine --zone $i --tags
nat --service -account $serv_account --scopes cloud -

platform --metadata -from -file startup -script =./ startups
/nat -gateway.sh" # Creates a nat -gateway instance for
each zone

64 progress;
65
66 cmd="gcloud -q compute routes delete no -ip-internet -route -

dc$((max_lb + k))" # Deletes the forwarding -route for
the the specific zone if exists

67 progress;
68
69 cmd="gcloud -q compute routes create no -ip-internet -route -

dc$((max_lb + k)) --network default --destination -range
0.0.0.0/0 --next -hop -instance nat -gateway -dc$((max_lb

+ k)) --next -hop -instance -zone $i --tags no -ip-dc$((
max_lb + k)) --priority 800" # Creates a forwarding -
route for all the worker instances that connects
trhough nat -gateway instance

70 progress;
71
72 max_inst=$(gcloud compute instances list | grep $inst -dc$

((max_lb + k)) | awk ’{print $1}’ | grep -o ’[0-9]*$’ |
jq -s max) # Finds the number of existing worker

instances in the data -centre
73 l=1
74 for j in $(eval echo {1.. $inst_number }); do
75 cmd="gcloud -q compute instances create $inst -dc$((

max_lb +k))-$((max_inst + l)) --network default --
no -address --image $image --machine -type
$inst_machine --zone $i --tags no-ip-dc$((max_lb +
k)) --service -account $serv_account --scopes cloud -
platform --metadata -from -file startup -script =./
startups/worker -$variant/worker -$variant.sh" #
Creates worker instances with nat -gateway tags and
service account properties

76 progress;
77 let "l++"
78 done
79 let "k++"
80 done
81
82 ./ sidekicks/create -instance -group.sh # Initiates instance -

group setup process
83 ./ sidekicks/dns.sh # Initiates cloud DNS setup process

139

Appendices NSA5930 : Master’s Thesis in Spring 2018

Appendix F

Performance Evaluation Scripts

F.1 data-collector.sh

1 #!/bin/bash
2
3 # Copyright: Freeware (any user can download or distribute

this script)
4 # Run the code at your own risk. Follow the instructions in

README.
5 # Author: Samiul Saki
6 # Email: samiulsaki@gmail.com
7
8 # Script: Testing
9

10 declare -a lb=(’lb -dc1 ’ ’lb-dc2 ’ ’lb -dc3 ’)
11
12 for argh in ${lb[@]}; do
13 lb_ip=$(gcloud compute instances list | grep $argh |

awk ’{print $5}’) # Finds all the load -balancer ’s
IP addresses

14 rtime=$(eval "curl -sSL ’http :// $lb_ip/haproxy?stats;
csv;norefresh ’ | cut -d "," -f 2,61 | column -s, -t
| grep worker | awk ’{print \$2}’ ") # Curl the

HAProxy stats in csv format running in the load -
balancer

15 sum=0
16 for i in $rtime; do # Sum them together in a loop
17 sum=$((sum + i))
18 done
19 eval "var=$(echo $argh | sed "s/lb -//g" | sed "s/.csv//g")

" # Creates dc variables
20 avg_resp=$((sum / $(echo "${rtime}" | wc -l))) #

Calculates average response time of the laod -balancer
21 div="1000"
22 eval "${var}_resp=$(echo "($avg_resp) / $div" | bc -l)" #

Convert the response time in seconds and insert in the
dc_resp variable

23 eval "${var}_worker=$(echo $(echo "${rtime}" | wc -l))" #
Creates and add the number of workers in dc_worker
variable

24 done
25

140

Appendices NSA5930 : Master’s Thesis in Spring 2018

26 printf "‘date ’+%Y%m%d-%H%M%S’‘,$dc1_resp ,$dc1_worker ,
$dc2_resp ,$dc2_worker ,$dc3_resp ,$dc3_worker\n" >> ./file.
csv # Appeneds the data to the csv file

F.2 ewma.py

1 #!/usr/bin/python
2
3 import os, sys , re
4 import numpy as np
5 import time
6 from datetime import datetime
7 import pandas as pd
8 import matplotlib.pyplot as plt
9

10 file=sys.argv [1]
11
12 fmt = "%Y%m%d-%H%M%S"
13 df = pd.read_table(file , sep=’,’, skiprows=1, skipfooter =0,

engine=’python ’,
14 names=[’Ptime’, ’DC1_Resp ’, ’DC1_Worker ’, ’

DC2_Resp ’, ’DC2_Worker ’, ’DC3_Resp ’, ’
DC3_Worker ’],

15 parse_dates=True ,
16 date_parser=lambda s: datetime.strptime(s,

fmt),
17 index_col =0)
18
19
20 def plot(DC1=False , DC1_raw=False , DC1_ma=False , DC1_ewma=

False , DC2=False , DC2_raw=False , DC2_ma=False , DC2_ewma=
False , DC3=False , DC3_raw=False , DC3_ma=False , DC3_ewma=
False , window_span=None , periods=None , show=False , savefig=
False , scheme=’’, label=’’):

21 plt.figure ()
22 plt.title(label)
23 if DC1:
24 dc1_resp = df[’DC1_Resp ’]
25 if DC1_raw:
26 dc1_resp.plot(label=’Raw data DC1’)
27 if DC1_ma:
28 roll1 = dc1_resp.rolling(center=False , window=

window_span , min_periods=periods).mean()
29 roll1.plot(label=’Moving Average DC1’, linestyle=’

--’, linewidth =1.2)
30 if DC1_ewma:
31 ewma1 = pd.ewma(dc1_resp , span=window_span ,

min_periods=periods)
32 ewma1.plot(label=’EW Moving Average DC1’,

linestyle=’--’, linewidth =1.2)
33 if DC2:
34 dc2_resp = df[’DC2_Resp ’]
35 if DC2_raw:
36 dc2_resp.plot(label=’Raw data DC2’)
37 if DC2_ma:

141

Appendices NSA5930 : Master’s Thesis in Spring 2018

38 roll2 = dc2_resp.rolling(center=False , window=
window_span , min_periods=periods).mean()

39 roll2.plot(label=’Moving Average DC2’, linestyle=’
--’, linewidth =1.2)

40 if DC2_ewma:
41 ewma2 = pd.ewma(dc2_resp , span=window_span ,

min_periods=periods)
42 ewma2.plot(label=’EW Moving Average DC2’,

linestyle=’--’, linewidth =1.2)
43 if DC3:
44 dc3_resp = df[’DC3_Resp ’]
45 if DC3_raw:
46 dc3_resp.plot(label=’Raw data DC3’)
47 if DC3_ma:
48 roll3 = dc3_resp.rolling(center=False , window=

window_span , min_periods=periods).mean()
49 roll3.plot(label=’Moving Average DC3’, linestyle=’

--’, linewidth =1.2)
50 if DC3_ewma:
51 ewma3 = pd.ewma(dc3_resp , span=window_span ,

min_periods=periods)
52 ewma3.plot(label=’EW Moving Average DC3’,

linestyle=’--’, linewidth =1.2)
53 os.system(’clear’)
54 plt.legend(loc=’best’)
55 plt.xlabel(’Time (in secs)’)
56 plt.ylabel(’Average Response Times (in secs)’)
57 plt.tight_layout ()
58 if show: plt.show()
59 if savefig: plt.savefig(’./plots/plots_testbed_ ’ + str(

scheme) +’.png’)
60 plt.close ()
61
62 plot(
63 DC1=True , DC1_raw=False , DC1_ma=False , DC1_ewma=True ,
64 DC2=True , DC2_raw=False , DC2_ma=False , DC2_ewma=True ,
65 DC3=True , DC3_raw=False , DC3_ma=False , DC3_ewma=True ,
66 window_span =100, periods=1, show=False , savefig=True ,
67 scheme=’[variant]’, label=’Test -Bed: Response Times - [

variant]’
68)

142

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	Introduction
	Motivation
	Problem Statement
	Report Outline

	II The Project
	Enabling Technologies and Related Work
	Hypervisor
	Types of hypervisors
	Benefits of hypervisors

	Virtual Machines and Virtual Infrastructure
	Kernel-Based Virtual Machine (KVM)
	Quick Emulator(QEMU)
	Xen

	Ubuntu
	Cloud Computing
	Benefits of cloud computing

	Overview of the Tools
	Google Cloud Platform (GCP)
	Python
	Bash
	HAProxy
	Consul
	ApacheBench (AB)

	Related Work
	Researches based on evolutionary game theory
	Researches based on the migration of VMs
	Researches based on autonomous self-organising VMs
	Researches based on surveys

	Methodology and Approaches
	Overview of the Methodology
	Evolutionary game theory
	Erlang Unit
	Migration of Virtual Machines
	Self-management

	Approaches
	General algorithm
	Uniform-site migration (naive)
	Uniform-site migration (informed)
	Biased migration
	Single-point migration
	Uniform-site migration (informed) using peer-to-peer communication
	Uniform-site migration (informed) using graph partitioning

	Architecture Overview
	Infrastructure requirements

	Regional Setup
	Cross-region HTTP load-balancer setup
	Google cloud DNS setup
	Service account setup
	Consul-Master instance setup
	Load-balancer instance setup
	Worker instance setup
	NAT-Gateway instance setup
	Migration procedure
	Initial setup script

	III Conclusion
	Results and Analysis
	Results: Test-Simulation
	Results: Simulation of uniform-site migration (naive)
	Results: Simulation of uniform-site migration (informed)
	Results: Simulation of biased migration
	Results: Simulation of single-point migration
	Results: Simulation of uniform-site migration (informed) using peer-to-peer communication
	Results: Simulation of uniform-site migration (informed) using graph partitioning

	Results: Test-Bed
	Result: Test-bed with no migration
	Result: Test-bed of uniform-site migration (naive)
	Result: Test-bed of uniform-site migration (informed)
	Result: Test-bed of biased migration
	Result: Test-bed of single-point migration (informed)
	Result: Test-bed of migration schemes with dynamic HTTP requests

	Discussion
	Discussion: Uniform-Site Migration (Naive)
	Discussion: Uniform-Site Migration (Informed)
	Discussion: Biased Migration
	Discussion: Single-Point Migration

	Conclusions and Future Work
	Conclusion
	Contribution
	Future Work

	Bibliography
	Appendices:
	Test-Simulation Scripts
	naive-uniform-site-migration.py
	informed-uniform-site-migration.py
	biased-migration.py
	single-point-migration.py
	peer-to-peer-connection.py
	uniform-graph-partition.py

	Test-Bed Assisting Scripts
	create-instance-group.sh
	dns.sh

	Test-Bed Startup Scripts
	consul-master.sh
	lb.sh
	nat-gateway.sh
	worker.sh

	Test-Bed Migration Scripts
	csv-gen.sh
	migrate-uniform-naive.sh
	migrate-uniform-informed.sh
	migrate-biased.sh
	migrate-single-point.sh

	Test-Bed Initial Script
	automate.sh

	Performance Evaluation Scripts
	data-collector.sh
	ewma.py

